
First Iranian Conference on

Computational Geometry

(ICCG 2018)

Proceedings

Amirkabir University of Technology
Tehran, Iran, February 27, 2018

Compilation copyright c© 2018 Zahed Rahmati

Copyright of individual contributions remains with the authors

ii

Foreword

The first Iranian Conference on Computational Geometry was held on February 27, 2018 at the
Department of Mathematics and Computer Science of the Amirkabir University of Technology,
in Tehran. The goal of this annual, international conference is to bring together students and
researchers from academia and industry, in order to promote research in the fields of combinatorial
and computational geometry.

This volume of proceedings contains a selection of fifteen refereed papers and an invited talk
that were presented during the conference, in three sections. I would like to thank my pc co-
chair Mohammad Ali Abam, all the pc members, and members of the local organizing committee
(Mohammad Javad Hekmat Nasab, Mohammad Reza Kazemi, and Ali Mohades Khorasani).

I also want to thank the sponsors: Amirkabir University of Technology for financial supports,
Islamic World Science Citation Center (ISC) for indexing the conference (#ISC 96171-11103), and
Institute for Research in Fundamental Sciences (IPM) and Laboratory of Algorithms and Compu-
tational Geometry for other supports they provided.

Zahed Rahmati

iii

Invited Speaker

Maarten Löffler Utrecht University, Netherlands

General Chair

Zahed Rahmati Amirkabir University of Technology

Program Committee

Mohammad Ali Abam Sharif University of Technology (co-chair)
Mansoor Davoodi Monfared Institute for Advanced Studies in Basic Sciences
Mohammad Farshi Yazd University
Mohammad Ghodsi Sharif University of Technology
Shahin Kamali University of Manitoba
Ali Mohades Khorasani Amirkabir University of Technology
Debajyoti Mondal University of Saskatchewan
Zahed Rahmati Amirkabir University of Technology (co-chair)
Mohammadreza Razzazi Amirkabir University of Technology
Alireza Zarei Sharif University of Technology
Hamid Zarrabi-Zadeh Sharif University of Technology

Local Organizers

Mohammad Javad Hekmat Nasab Amirkabir University of Technology
Mohammad Reza Kazemi Amirkabir University of Technology
Ali Mohades Khorasani Amirkabir University of Technology
Zahed Rahmati Amirkabir University of Technology

iv

Conference Program

Tuesday February 27 1

Invited talk 1

Maarten Löffler

Session 1 3

Arash Ahadi and Alireza Zarei

Davood Bakhshesh and Mohammad Farshi

Sepideh Aghamolaei and Mohammad Ghodsi

Ali Gholami Rudi

Homa Ataei Kachooei, Mansoor Davoodi and Dena Tayebi

Session 2 25

Fatemeh Baharifard, Majid Farhadi and Hamid Zarrabi-Zadeh

Amir Mesrikhani, Mohammad Farshi and Mansoor Davoodi

Ali Gholami Rudi

Abolfazl Fatholahzadeh and Dariush Latifi

Session 3 47

Abolfazl Poureidi, Davood Bakhshesh and Mohammad Farshi

v

1 Geometry and Topology in Trajectory Analysis

3 Connected Guards in a Simple Polygon

7 Fault Tolerancy of Continuous Yao Graph

11 A Theoretical Proof of Angular Random Walk

15 Answering Time-Windowed Queries of Contiguous Hotspots

19 On the Generalized Minimum Spanning Tree in the Euclidean Plane

25 Routing in Well-Separated Pair Decomposition Spanners

29 Progressive Algorithm For Euclidean Minimum Spanning Tree

33 A New Construction of the Greedy Spanner in Linear Space
Davood Bakhshesh and Mohammad Farshi

37 Approximate Hotspots of Orthogonal Trajectories

41 Knowledge Representation for the Geometrical Shapes

47 Increasing-Chord Planar Graphs for Points in Convex Position

Bahram Sadeghi Bigham, Maryam Nezami and Marziyeh Eskandari

Mansoor Davoodi, Mehdi Khosravian Ghadikolaei and Mohammad Mehdi Malekizadeh

Zahra Gholami and Mansoor Davoodi

Alireza Mofidi

vi

63 Kinetic Nearest Neighbor Search in Black-Box Model

67 Exploring Rectangular Grid Environments

73 Shortest Path Problem among Imprecise Obstacles

77 On Some VC-combinatorial notions in computational geometry

Covering Points by Triangles

Accepted (not presented)
81

Sima Hajiaghaei Shanjani and Alireza Zarei

ICCG 2018, Tehran, February 27, 2018

Geometry and Topology in Trajectory Analysis

Maarten Löffler∗

Utrecht University, Netherlands

Abstract

Trajectories, sequences of time-stamped points in the plane or higher dimensions, are collected in massive quan-
tities across a range of application domains. Consequently, the computational complexity of analysis tasks on
trajectories is increasingly studied. One fundamental analysis task for a given set of trajectories is to cluster it; that
is, to subdivide it into groups of similar trajectories.

Clustering of points is a highly studied topic in computational geometry. However, the clustering of trajectories
adds significant complexity compared to traditional clustering. We identify three key steps in the design of a
clustering algorithm: the choice of a distance measure, the choice of a notion of a center, and the choice of what we
consider a cluster. Traditional clustering focuses on the third step, as the first two steps are much less intricate.

We discuss the modeling aspects of each step, focusing on the geometric and topological structure and the resulting
algorithmic questions that arise: even evaluating distance or calculating the center of a fixed set of trajectories is
not trivial, depending on the modeling choices made. We discuss in detail several recent algorithmic results that
can be related to different steps in the clustering paradigm.

∗Department of Computing and Information Sciences, Utrecht University, the Netherlands. m.loffler@uu.nl

1

2

ICCG 2018, Tehran, February 27, 2018

Connected Guards in A Simple Polygon

Arash Ahadi∗ Alireza Zarei†

Abstract

Sadhu et al. considered cluster connecting problem in-
side a polygon [6]: For a given set of initial guards inside
a given simple polygon P, the goal is to obtain a min-
imum set of new guards, such that new guards along
with the initial ones make a connected visibility graph.
The visibility graph of a set of points inside P is a graph
whose vertices correspond to the point set and each edge
represents the visibility between its endpoints inside P.
They showed that if the new guards are restricted to
lie on the vertices of P, the problem is NP-hard, and
proposed an approximation solution with logarithmic
approximation factor in term of the number of vertices
of P. We show that this problem is NP-hard in all cases,
where the initial guards and the new ones are restricted
to vertices, boundary or all points of P. We propose
constant factor approximation algorithms for all cases.

1 Introduction

The art gallery problem in a simple polygon, introduced
by Klee in 1973 [4], is to determine the minimum num-
ber of guards that see all points of the polygon. Af-
terward, many results have been obtained for different
versions of this problem. We refer the reader to [2] for
a survey on art gallery problems.

In some versions of the art gallery problem, other than
covering the polygon, the inter-visibility of the guards
has been considered as well. For example, in some appli-
cations we need direct communication between guards
or we may prohibit such links. These problems are re-
spectively called cooperative guard set and hidden guard
set. These versions of the problem are well described by
visibility graph. The visibility graph of a set of points
inside a simple polygon is a graph whose vertices are
this point set, and there is an edge between correspond-
ing vertices of a pair of points if and only if they are
visible from each other. Two points of a polygon are
visible from each other (or for simplicity, visible) when
their connecting segment completely lies inside the poly-
gon. In this definition, the boundary of the polygon is
considered to be inside the polygon. According to this
definition, the visibility graph of a connected guard set
is connected, and it has no edge for a hidden guard set.

∗Department of Mathematics Science, Sharif University of
Technology, arash(underline)ahadi5@yahoo.com
†zarei@sharif.ir

Sadhu et al. in [6] introduced another version of the
art gallery problem, named cluster connected, in which
we have an initial set of guards in a given simple poly-
gon and the goal is to obtain minimum number of new
guards such that the visibility graph of the whole guards
(initial and new ones) is connected. This problem has
applications in sensor network, where a set of sensors
are distributed to monitor a polygonal region. It may
happen that the placed sensors cannot form a connected
network either due to the obstructions of the polygonal
boundary or due to the malfunction of some sensors.
The goal is to locate the minimum number of new sen-
sors to have a connected network [6]. In this paper, we
call the initial guards as terminal guards and the new
guards as Steiner guards. To be convenient with the
well-known minimum Steiner tree problem, we call this
version of the art gallery problem minimum connected
Steiner guard set.

This problem is formally defined as follows:
Problem Γ (minimum connected Steiner guard set):
Instance: A simple polygon P and a finite set of

points Q as terminal guards inside (or maybe on the
boundary of) P.
Question: Find a minimum set X of points such that

Q ⊆ X and the visibility graph of pointsX, with respect
to P, is connected.

For a set X that its visibility graph is connected, we
call the points of X −Q by Steiner guards. If locations
of Steiner guards are restricted to a set of points A,
we denote the problem by ΓA. Specifically, we consider
ΓV (P) and Γρ(P), where V (P) is the set of vertices of P
and ρ(P) is the boundary of P. Based on the restriction
of locations of terminal or Steiner guards, this problem
can be considered in some versions: when locations of
(i) terminal guards, (ii) Steiner guards, (iii) both, are
restricted to (i′) the vertices of P, (ii′) the boundary of
P or (iii′) any point inside P.

In [6] the NP-hardness of this problem has been
shown, when locations of both terminal and Steiner
guards are restricted to the vertices of P. They also
presented a log n factor approximation algorithm for the
number of new guards in this restricted version of the
problem where n is the number of vertices of P.

In this paper, we consider all versions of Γ. We show
NP-hardness of all cases and present O(1) factor ap-
proximation algorithms. Our NP-hardness proof is sim-
pler and shorter than the proof in [6]. In the approxi-
mation algorithms we build an enhanced graph over a

3

1st Iranian Conference on Computational Geometry

Pc1 Pc2 Pc5

qx2
qx7

qx8

qc5x2qc2x2

qc1x2
qc1x7

qc1x8

Figure 1: The instance of Problem Γ for ψ = (X;C),
where c1 = x2 ∧ x7 ∧ x8 and x8 is a literal of c1, c2 and
c5.

finite subset of points of P (compared to the graph used
in [6]) and solve an instance of Steiner tree problem. We
prove that approximation factors of our algorithms are
2.79 for the general and Γρ(P) versions of the problem
and 1.39 for ΓV (P).

In the rest of the paper, we first prove the NP-
hardness in Section 2 and present approximation algo-
rithms in Section 3.

2 Complexity

We reduce a known NP-complete satisfiability problem
named cubic monotone 1-in-3 SAT to Γ. A satisfiability
problem is monotone if there is no negative literal in any
clause and is cubic if each literal appears in exactly three
cluases. In an instance of a cubic monotone 1-in-3 SAT
problem, the question is to determine the existence of
a {true, false} assignment to the variables such that
each clause contains exactly one true literal. It has
been shown that cubic monotone 1-in-3 SAT is NP-
complete [5].

Theorem 1 Problem Γ is NP-hard.

Proof. Let ψ be an instance of cubic monotone 1-in-
3 SAT problem with literal set X and clause set C.
Consider the polygon P shown in Figure 1 that has
|C| petals, one for each clause ci ∈ C, with sufficiently
small aperture. For each literal xj ∈ X there is a point
qxj

in the bottom part of P . Finally, for each clause
ci = α∨β∨γ there are three distinct points qciα , q

ci
β and

qciγ in petal Pci such that qcix will be visible from qx, for
every x ∈ {α, β, γ}.

Now consider the input (P, {qcixj
: xj ∈ ci}) for prob-

lem Γ. According to the structure of P, each point qcixj

only sees the points qciα of its petal Pci . Let L be the set
of segments each of which connects a literal point qcixj

to its clause point qci where xj is a literal of clause ci.
Positions of points qci ’s have this property that no three

segments of L have common intersection point except at
their endpoints. This property can be easily achieved
by properly positioning points qci ’s. Moreover, we can
decrease the length of aperture of each petal such that if
three points qcx, qc

′
x′ and qc

′′
x′′ have common visible region,

then either c = c′ = c′′ or x = x′ = x′′.
Each new guard sees at most 3 initial guards. So,

every Steiner guard set has at least |C|3 points. There

is a set of |C|3 Steiner guards if and only if ψ has some
1-in-3 assignment. The reduction is polynomial which
completes the proof. �

By keeping the locations of guards and constricting
the boundary of P, we can draw the polygon P in such
a way that points qcixj

’s or qci ’s lie on V (P) or ρ(P).
Therefore, all nine versions of Problem Γ ((terminal
guards, Steiner guards, both types of guards) are re-
stricted to (vertices, boundary, all points) of P) are
NP-hard.

3 Approximation Algorithms

Our approximation algorithms for different versions of
Γ are based on one idea. Before presenting these algo-
rithms, we need some definitions.

Inside a simple polygon P, a point p is visible from
another point q if and only if the line segment pq lies en-
tirely inside P. For a point q inside or on the boundary
of P, the visibility polygon of q, denoted by V (q) is the
set of all points which are visible from q (see Figure 2-
A). For a finite set of points A inside P, their visibility
graph, denoted by V G(A), is a graph with vertex set A,
and there is an edge between two vertices if and only
if their corresponding points in P are visible from each
other (see Figure 2-B).

If we extend the corresponding segment of each edge
of a visibility graph V G(A) in both sides until intersect-
ing the boundary of P, a new subdivision on P is ob-
tained which is called the extended visibility graph of A
and is denoted by EV G(A). More precisely, EV G(A)
is a graph with vertex set A ∪ B, which B is the in-
tersection points of the obtained subdivision and each
edge corresponds to a segment in this subdivision (see
Figure 2-C). The corresponding subdivision of the ex-
tended visibility graph EV G(A) has this property that
all points of a region see the same subset of points in
A and the visible subsets of two adjacent regions differ
only in one vertex.

The second order visibility graph of a point set A, de-
noted by V G2(A), is the visibility graph built on the
vertex set of EV G(A). Therefore, the vertex set of
V G2(A) is the same as the vertices of EV G(A). But,
have more edges than EV G(A). For example, the edge
px exists in V G2({a, b, c, d, p}) in Figure 2-C.

In a graph whose vertices are partitioned into two sets
terminal vertices T and Steiner vertices S, a Steiner

4

ICCG 2018, Tehran, February 27, 2018

p

(A)

p

(B)a

b

c a

b

c

p

(C)a

b

c

ddd

x

Figure 2: (A) The visibility polygon V (p). (B) The vis-
ibility graph V G({a, b, c, d, p}). (C) The extended visi-
bility graph EV G({a, b, c, d, p}). All points of a region
in the subdivision of EV G({a, b, c, d, p}) see the same
vertices of {a, b, c, d, p}.

tree is a tree containing all terminal vertices and a min-
imum Steiner tree is a Steiner tree of minimum possible
number of Steiner vertices.

Now, we consider the relations between Γ, second or-
der visibility graph and a minimum Steiner tree. Let
OPT be an optimal solution of Γ for polygon P and
terminal guards Q. In the following we denote the set
of vertices of P by V .

Lemma 2 There is a Steiner tree of at most 2|OPT |
Steiner vertices for the Steiner tree problem on graph
V G2(Q ∪ V) and terminal vertices Q.

Proof. We use a constructive argument to prove. Let
T be a spanning tree for V G(Q ∪ OPT). We build a
Steiner tree S on V G2(Q ∪ V) for Steiner vertices Q as
follows. Initialize S as an spanning forest of induced
subgraph of T on vertices Q. Trivially, S is a subgraph
(not necessarily connected) of V G2(Q∪V). To make S
connected, for each vertex v ∈ OPT , we select at most
two vertices from the vertex set of V G2(Q ∪ V), and
add them along with some new edges to S.

This is done by iteratively considering vertices in
OPT . We start from vertices which are connected to
some vertices of Q in T . Let eqp be an edge connecting
the vertex q ∈ Q to the vertex p ∈ OPT in T . The point
p lies inside a region of the subdivision of EV G(Q∪ V)
and all points of this region (including vertices of the
boundary of this region) see q as well. Remember that
all points of a region of EV G(Q∪ V) see the same sub-
set of points in Q ∪ V , and q belongs to Q. On the
other hand, all boundary vertices of this region belong
to the vertices of V G2(Q∪V) and are connected to q in
this graph. Therefore, we can add to S anyone of these
boundary vertices along with all edges connecting this
vertex to all vertices of Q that are connected to p in T .
Note that in this step, any one of the vertices of OPT
is handled by adding one vertex to S.

The remaining vertices are handled by processing
edges of T that connect pairs of vertices of OPT . For
this purpose, we iteratively choose an edge which con-
nects a currently handled vertex of OPT to another ver-
tex of OPT . Currently handled vertex means that we

r

p

c

d

v1

x

v2

Figure 3: The shortest path between x and c can have
at most one internal vertex.

have already added to S one of the boundary vertices
of its containing region. Let erp be an edge which con-
nects the currently handled vertex r ∈ OPT to a vertex
p ∈ OPT . As shown in Figure 3, assume that x is
the vertex from the boundary region of r that has been
added to S, and cd is the boundary edge of the contain-
ing region of p in EV G(Q ∪ V) intersected by segment
rp. As shown in Figure 3, c is the vertex that lies on
the same side of the line through r and p as x. Con-
sider the shortest path between vertices x and c in P.
This geodesic path is a concave polygonal chain with
end points x and c whose internal breakpoints are ver-
tices of P (this is because r and p are visible from each
other).

We prove that this chain has at most one internal
vertex. For the sake of a contradiction, assume that
there are two internal vertices v1 and v2 on this path.
These vertices are visible from each other and therefore,
extensions (in both sides) of their connecting segment
exist in EV G(Q ∪ V). These extensions intersect at
least one of the containing regions of r and p which is
in contradiction with the definition of a region in the
extended visibility graph for points p and r. For more
details, in that case at least one of the points x or c
cannot lie on the boundary region of respectively r and
p.

If the chain has no internal vertex, we add to S
the vertex c and the edge xc, which both exist in
V G2(Q ∪ V). Otherwise, we add the only internal ver-
tex v1 along with the edge xv1, which both exist in
V G2(Q ∪ V). Moreover (for the latter case only), if we
have not yet added a vertex on the boundary of the con-
taining region of p to S, the vertex c and the edge v1c are
also added to S, which again both exist in V G2(Q∪V),
and otherwise, if we have already added a vertex x′ on
the boundary region of p to S, we only add the edge
x′v1 to S. The edge x′v1 exists in V G2(Q∪ V) because
c and v1 are visible from each other, v1 ∈ V , and x′ and
c belong to the same region of the extended visibility
graph EV G(Q ∪ V).

After processing all edges between vertices of OPT
in T , we obtain a connected Steiner tree in S. This
tree has at most |OPT | Steiner vertices added in the
first and second step which are vertices of the boundary
of the regions that contain vertices OPT . Moreover, it

5

1st Iranian Conference on Computational Geometry

s1 s3

t1 t2
t3 t4

t5 t6

d1

d2

s2

Figure 4: In any optimal answer for terminal guards
{t1, . . . , t6}, the middle Steiner guard, s2, must lie in-
side (not on the boundary) of a region of the extended
visibility graph (above line d2 and under d1).

has at most |OPT |−1 vertices added in the second step
(one for each edge). �

Figure 4 shows an example in which Steiner guards
in any optimal solution are not a subset of the vertices
of V G2(Q ∪ V) graph. In this figure, t1, . . . , t6 are the
initial guards and we need at least three Steiner guards
to have a connected guard set. If we put s1 and s3
Steiner guards on some vertices of V G2(Q∪ V) (as put
in this figure), the third Steiner guard s2 must lie in the
gray region (to see both t1 and t2) and above the line
d2 (to see s3) and bellow d1 (to see s1). As the figure
shows, there is no vertex of V G2(Q ∪ V) in the region
constrained by these three conditions.

The above lemma gives an approximation algorithm
for the general version of Problem Γ. Note that the
process used for building S is only for the proof purpose;
and is not a part of our approximation algorithm.

Theorem 3 There is a polynomial time approximation
algorithm which for any instance of Γ, obtains at most
(4 ln 2 + ε)|OPT | ' 2.79|OPT | Steiner guards, where
|OPT | is the number of Steiner guards in an optimal
solution.

Proof. For solving Γ on an instance polygon P and ter-
minal guards Q, we compute the second order visibility
graph V G2(V ∪Q). This is possible in polynomial time.
Then, we solve an instance of the minimum Steiner
tree problem on graph V G2(V ∪Q) with terminal ver-
tices Q and output the obtained Steiner vertices as the
Steiner guards (precisely, their corresponding points in
P). There is an 2 ln 2 + ε ' 1.39 approximation al-
gorithm for the minimum Steiner tree problem ([1] and
the first theorem of [3]). Combining this algorithm with
the result of Lemma 2, the approximation factor of our
algorithm is obtained. �

Let B be the vertices of EV G(Q ∪ V) which lie on
the boundary of P, and OPT be an optimal solution
of Γρ(P) for polygon P and terminal guards Q. By the
same argument as Lemma 2, it can be proved that there
is a Steiner tree of at most 2|OPT | Steiner vertices for
the Steiner tree problem on graph V G(B) and terminal
vertices Q. This means that Γρ(P) can be solved in
polynomial time by an approximation algorithm which
obtains at most (4 ln 2 + ε)|OPT | ' 2.79|OPT | Steiner
guards.

The following theorem shows that we can halve the
approximation factor for ΓV (P) version of the problem
in which the Steiner guards are restricted to the vertices
of P.

Theorem 4 There is a 1.39-approximation algorithms
for ΓV (P) problem.

Proof. Similar to the proof of Theorem 3, we build
the visibility graph V G(V ∪ Q) on terminal guards Q
and vertices of P and solve an instance of the mini-
mum Steiner tree problem on this graph with terminal
vertices Q using the 2 ln 2 + ε ' 1.39 approximation al-
gorithm [1]. This gives us a 1.39 approximation factor
algorithm for Problem ΓV (P). �

References

[1] J. Byrka, F. Grandoni, T. Rothvo and L. Sanita An im-
proved LP-based approximation for Steiner tree Proc.
of the 42nd ACM symposium on theorey of computing
583-592, 2010.

[2] S. K. Ghosh Visibility Algorithms in the Plane. Cam-
bridge University Press 2007.

[3] M. Hauptmann and M. Karpińsky A compendium on
Steiner tree problems für Informatik, 2013.

[4] D. T. Lee and A. K. Lin Computational complexity of
art gallery problems. IEEE Transactions on Informa-
tion Theory 32(2):276-282, 1986.

[5] C. Moore and J. M. Robson Hard tiling problems
with simple tiles. Discrete Computational Geometry
26(4):573-590, 2001.

[6] S. Sadhu, A. Bishnu, S. C. Nandy and P. P. Goswami
Cluster connecting problem inside a polygon. Proc. of
the 22-th Canadian Conference on Computational Ge-
ometry, 2010.

6

ICCG 2018, Tehran, February 27, 2018

Fault Tolerancy of Continuous Yao Graph

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

Let S be a point set in the plane and 0 < θ ≤ 2π be
a real number. The continuous Yao graph cY (θ) for S
is constructed as follows. For each p, q ∈ S, we add
the edge (p, q) to cY (θ), if there exists a cone C with
apex at p and aperture θ such that q is the closest point
to p inside C. In this paper, we show that for every
π/3 ≤ θ < 2π/5, the continuous Yao graph cY (θ) is a
region-fault tolerant t-spanner in which t only depends
on θ.

1 Introduction

Let S ⊂ R2 be a set of points. A graph G with vertex
set S is called geometric graph, if each edge e = (p, q)
in G is a straight-line between p and q, and the weight
of e is the Euclidean distance between p and q, denoted
by |pq|. A geometric graph G with vertex set S is called
a t-spanner for t ≥ 1, if for each pair p, q ∈ S, there
exists a path in G between p and q of length at most
t|pq|, where the length of a path in G is the sum of
the weights of all edges on the path. We call a such
path a t-path between p and q. The smallest value of
t ≥ 1 that makes a geometric graph G a t-spanner is
called dilation (stretch factor) of G. For a geometric
graph G = (S,E), a geometric graph G′ = (S,E′) with
E′ ⊆ E is called a t-spanner for G, if for each two points
p, q ∈ S, δG′(p, q) ≤ t × δG(p, q), where δG(p, q) is the
length of the shortest path between p and q in G. The
reader can see the book by Narasimhan and Smid [4]
to find some algorithms for efficient construction of t-
spanners and their applications.

In 2014, Barba et al. [3] introduced the continuous
Yao graphs to construct a t-spanner for a given point set.
Let S be a set of points in the plane and let 0 < θ ≤ 2π
be a real number. The continuous Yao graph cY (θ) for
S is constructed as follows. For each point p ∈ S, cY (θ)
contains an edge (p, q) if and only if there is a cone
with apex at p and aperture θ such that q is the closest
point to p inside the cone. Although the continuous
Yao graphs unlike the regular Yao graphs may have a
quadratic number of edges, they have some advantages

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran. dbakhshesh@gmail.com
†Combinatorial and Geometric Algorithms Lab., Depart-

ment of Computer Science, Yazd University, Yazd, Iran.
mfarshi@yazd.ac.ir

[2]. For example the continuous Yao graphs unlike the
regular Yao graphs are invariant under the rotation of
the point set [2].

An important feature of a network is fault tolerancy in
the sense that if we remove some of its nodes and edges,
then the remaining network is still a suitable network.
Abam et al. [1] introduced the concept of region-fault
tolerant t-spanner. Let F be a region in the plane. As-
sume that we delete all edges and vertices of G that
have intersection with the region F . We denote the re-
maining graph by G 	 F . Let F be a set of regions in
the plane. We call G is an F-fault tolerant t-spanner if,
for any region F ∈ F , the graph G 	 F is a t-spanner
for KS 	 F , where KS is the complete geometric graph
on S.

In [2], Bakhshesh et al. presented some results on the
dilation of the continuous Yao graphs and their fault
tolerancy. They proved that the dilation of cY (θ) is at
most 1/(1−2 sin(θ/4)) when θ < 2π/3 and 6.0411 when
θ = 2π/3. For larger angles, they showed that cY (θ)
may be disconnected when θ > π and it is connected
when θ ≤ π. They also showed that the dilation of
cY (π) is unbounded. Moreover, they showed that if
0 < θ < π/3, then the continuous Yao graph cY (θ), is a
C-fault tolerant geometric t-spanner for t ≥ 1

1−2 sin(θ/2) ,

where C is the family of all convex regions in the plane.
They left the study of fault tolerancy of cY (θ) for θ ≥
π/3 as an open problem.

In this paper, we show that the continuous Yao graph
cY (θ) for π/3 ≤ θ < 2π/5, is a C-fault tolerant geomet-
ric t-spanner for a constant number t that only depends
on θ.

2 Preliminaries

Let h be an arbitrary half-plane, and a and b be an
arbitrary pair of points among the points of cY (θ)	 h.
We define the cone C∗ab as follows. Let `ab be the line
supported by a and b and α be the obtuse or right angle
outside h between `ab and the boundary of h as depicted
in Figure 1. Also, let A be the region obtained by ` and
boundary of h as depicted in Figure 1.

Let C∗ab be the cone with apex a such that one of its
boundaries passes through b and its other boundary is
in the region A. Analogously, we can define C∗ba. Since
α ≥ π/2 and a and b are outside h, according to the
definition of the cones C∗ab and C∗ba, it is not hard to see

7

1st Iranian Conference on Computational Geometry

a
`ab

b

α ≥ π
2

h

C∗
abC∗

ba

θ θ

A

Figure 1: Region A and angle α.

that the closest point to a in C∗ab and the closest point
to b in C∗ba are outside h too.

Let a = (0, 0) and b = (1, 0) be two points in the
plane. Here, we use the notations of Bakhshesh et al
[2]. They defined inductive set of a with respect to b,
denoted by Iab, as follows.

Iab = {p ∈ R2 : |ap|+ t|pb| ≤ t|ab|}

Let c 6= b be the point on the boundary of C∗ab such
that |ac| = |ab| (see Figure 2). Symmetrically, let c′ 6= a
be the point on the boundary of C∗ba such that |bc′| =
|ab|. Let u be the intersection points of the boundary
of Iab with the segment ac. Symmetrically, let w be the
intersection points of boundary of Iba with the segment
bc′. Also, let v be the intersection point between Iab and
the circular arc of C(a, b, c), where C(a, b, c) is the the
circular sector between two radii ab and ac of a circle
with apex at a. Analogously, let v′ be the intersection
point between Iba and C(b, c′, a).

c′c

u w

vv′

IabIba

a b

Figure 2: Inductive sets Iab and Iba and the intersection
points.

Since a = (0, 0) and b = (1, 0), if p = (x, y) ∈ Iab, we

have

((−2 + x)x+ y2)2 t4 + (x2 + y2)2−
2(2 + (−2 + x)x+ y2)(x2 + y2) t2 = 0. (1)

Now, using Equation (1), we have

u =




2t
(
t−

√
tan2(θ) + 1

)

(
tan2(θ) + 1

)
(t2 − 1)

,
2t tan(θ)

(
t−
√

tan2(θ) + 1
)

(
tan2(θ) + 1

)
(t2 − 1)


 ,

w =


1−

2t
(
t−
√

tan2(θ) + 1
)

(
tan2(θ) + 1

)
(t2 − 1)

,
2t tan(θ)

(
t−
√

tan2(θ) + 1
)

(
tan2(θ) + 1

)
(t2 − 1)


 ,

v =

(
t2 + 2 t− 1

2t2
,

(t− 1)
√

3 t2 + 2 t− 1

2t2

)
,

v′ =

(
(t− 1)

2

2t2
,

(t− 1)
√

3 t2 + 2 t− 1

2t2

)
,

c = (cos(θ), sin(θ)) ,

c′ = (1− cos(θ), sin(θ)) .

Now, we have the following claim.

Claim 1 If t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
, then

max {|vv′|, |uc′|} ≤ |uw|.

Proof. To prove the lemma, we show that |uc′| ≤ |uw|
and |vv′| ≤ |uw|. First, we show that |uc′| ≤ |uw|. As
we know the coordinates of points u,w and c′, we have

|uc′| =

√√√√√√√√

(
2
(
t−
√

tan2(θ)+1
)
t

(tan2(θ)+1)(t2−1) − 1 + cos (θ)

)2

+

+

(
2 tan(θ)

(
t−
√

tan2(θ)+1
)
t

(tan2(θ)+1)(t2−1) − sin (θ)

)2 (2)

and

|uw| = 1−
4
(
t−
√

tan2 (θ) + 1
)
t

(
tan2 (θ) + 1

)
(t2 − 1)

. (3)

Now, by substituting equations (2) and (3) in the in-
equality |uc′| ≤ |uw| and simplifying the inequality, we
have
((
t2 + 2t− 1− 2t2 cos (θ)

)
(2 cos (θ)− 1)

(4 cos2 (θ) t2 + +2 t2 cos (θ)− 4 t cos (θ)− t2 − 2 t+ 1)/(t4 − 2 t2 + 1)
)
≤ 0.

(4)

Since θ ≥ π/3 and t > 1, obviously we have 2 cos(θ)−
1 ≤ 0 and t2 + 2t − 1 − 2t2 cos (θ) = (1 − 2 cos(θ))t2 +
2t− 1 ≥ 0. Hence, the inequality (4) is true if we have

(
4 cos2 (θ) t2 + 2 t2 cos (θ)− 4 t cos (θ)− t2 − 2 t+ 1

)
≥ 0,

8

ICCG 2018, Tehran, February 27, 2018

which is equivalent to

1+
(
4 cos2 (θ) + 2 cos (θ)− 1

)
t2+(−4 cos (θ)− 2) t ≥ 0.

(5)
Consider the equation

1+
(
4 cos2 (θ) + 2 cos (θ)− 1

)
x2+(−4 cos (θ)− 2)x = 0.

This equation has two solutions, as

x =
1

2 cos (θ) + 1±
√

2 cos (θ) + 2
.

Clearly, 1

2 cos(θ)+1+
√

2 cos(θ)+2
< 1. On the

other hand, for π/3 ≤ θ < 2π/5, we have
4 cos2 (θ) + 2 cos (θ)− 1 > 0. Hence, since t > 1, the
inequality (5) is true if

t ≥ 1

2 cos (θ) + 1−
√

2 cos (θ) + 2
.

Hence, if |uc′| ≤ |uw|, then t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
.

It is not hard to see that the above conclusions are
reversible. Hence, if t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
, then

|uc′| ≤ |uw|.
Now, we show that |vv′| ≤ |uw|. Using the coor-

dinates of the points v and v′, we have |vv′| = 2 t−1
t2 .

Now, consider the function

f(θ) = |uw| = 1−
4
(
t−
√

tan2 (θ) + 1
)
t

(
tan2 (θ) + 1

)
(t2 − 1)

.

Clearly f(π/3) = 2t−1
t2−1 ≥ 2t−1

t2 = |vv′|. To prove that
|vv′| ≤ |uw|, it is sufficient to show that the function f
is an increasing function for π/3 ≤ θ < 2π/5. Now, the
derivative f ′ of f with respect to θ is

f ′(θ) =
4t sin (θ) (2 t cos (θ)− 1)

t2 − 1
.

Since t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
and cos(θ) ≤ 1/2,

clearly t ≥ 1
2 cos(θ)+1−

√
3
≥ 1

2 cos(θ) , and therefore

2t cos(θ) − 1 ≥ 0. Hence, obviously, we have f ′(θ) ≥ 0,
and therefore f is an increasing function. Hence, if
t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
, then |vv′| ≤ |uw|. This

proves the claim. �

Let na be the closest point to a in C∗ab and nb be the
closest point to b in C∗ba. Now, we have

Claim 2 If na 6∈ Iab and nb 6∈ Iba, then |nanb| ≤
max{|uc′|, |uw|}.

Proof. Proof is similar to the proof of Lemma 3 in
[2]. The only difference is that we define Na and Nb to
be the convex hull of C(a, b, c)\Iab and the convex hull

of C(b, c, a)\Iba, respectively as depicted in Figure 3.
Notably, one of the two points realizing the maximum
|nanb| must be on the boundary of Na and another one
on the boundary of Nb that follows from [2]. The proof
is follows as the proof of Lemma 3 in [2]. �

c′c

u w

vv′

IabIba

a b

NaNb

Figure 3: The regions in Claim 2.

3 Main Result

In this section, we show that for any π/3 ≤ θ < 2π/5,
the continuous Yao graph cY (θ) is a C-fault tolerant t-
spanner. We will need the following lemma.

Lemma 1 ([1]) A geometric graph G on point set S
is a C-fault tolerant t-spanner if and only if it is an
H-fault-tolerant t-spanner, where H is the family of all
half-planes.

Theorem 2 For any π/3 ≤ θ < 2π/5, cY (θ) is a C-
fault-tolerant geometric t-spanner, where t is the small-
est real number such that t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
and

4 cos2 (θ) t3 − (2 + 4 cos(θ)) t2 + 2 ≥ 0.

Proof. By Lemma 1, it is sufficient to prove that cY (θ)
is an H-fault-tolerant geometric t-spanner. Hence, we
show that for every half-plane h and for each pair of
points a and b in cY (θ)	h, there is a t-path between a
and b in cY (θ)	 h.

Let h be an arbitrary half-plane, and a and b be an
arbitrary pair of points among the points of cY (θ)	 h.
We make the proof by induction on the rank of distance
|ab|. For the base step, suppose that (a, b) is the closest
pair of points among the points of cY (θ)	 h. Consider
the cone C∗ab. Now, rotate it a bit around the point a
clockwise such that the point b completely lies inside the
cone. We denote the resulting cone by C+. Since (a, b)
is the closest pair of points, the edge ab is added by C+.
It is obvious that if (a, b) is not a unique closest point,
using similar reason, it is added to cY (θ). Assume now
that for each two points x and y among the points of
cY (θ)	h with |xy| < |ab|, there exists a t-path between

9

1st Iranian Conference on Computational Geometry

x and y in cY (θ) 	 h. In the following, we prove that
there is a t-path between a and b in cY (θ)	 h.

Without loss of generality, assume that a = (0, 0) and
b = (1, 0). Recall the points u,w, v and v′ defined in the
previous section. According to the definition of points
u and w, clearly |uw| < 1. Hence, by Claim 1, we have
max {|vv′|, |uc′|} < 1.

In the following, we assume that t ≥
1

2 cos(θ)+1−
√

2 cos(θ)+2
. Let na be the closest point

to a in C∗ab and nb be the closest point to b in C∗ba.
Since na 6= a, |naa| > 0. Hence, t|nab| < |naa|+ t|nab|.
Now, if na ∈ Iab, then by the definition of Iab,
|naa| + t|nab| ≤ t|ab|. Hence, by the combination of
above equations, we have |nab| < |ab|. Therefore, we
can apply the induction hypothesis on the pair (na, b).
Hence, we obtain a path Q from na to b in cY (θ) 	 h
of length at most t|nab|. Now, consider the path
P := (a, na) ∪Q that is a path in cY (θ)	 h between a
and b. By the definition of the set Iab, the length of P ,
denoted by |P |, is equal to

|ana|+ |Q| ≤ |ana|+ t|nab| ≤ t|ab|. (Since na ∈ Iab)

Hence, P is a path in cY (θ) 	 h between a and b of
length at most t|ab| as desired.

Analogously, we can find a t-path between a and b in
cY (θ)	 h when nb ∈ Iba.

Now, assume that na 6∈ Iab and nb 6∈ Iba. Since |uc′|
and |uw| are less than one, by Claim 2 we have |nanb| <
1 = |ab|. Therefore, we can apply induction on (na, nb).
Hence, we obtain a path Q in cY (θ) 	 h from na to
nb of length at most t|nanb|. Consider the path P =
(a, na) ∪Q ∪ (nb, b) from a to b in cY (θ). Obviously, P
is a path in cY (θ) 	 h from a to b. We show that the
length of P is at most t|ab| = t.

By Claim 2, we have |nanb| ≤ max {|uc′|, |uw|}, and
by Claim 1, we have max {|uc′|, |vv′|} ≤ |uw|, and there-
fore |nanb| ≤ |uw|. Since |ana| and |bnb| are both at
most 1, by the combination of above inequalities, we
have

|P | = 2 + |Q| ≤ 2 + t|nanb| ≤ 2 + t|uw|.

We now prove that 2+t|uw| ≤ t|ab|. By Equation (3),
the inequality 2 + t|uw| ≤ t|ab|, after simplifying, is
equivalent to

4 cos2 (θ) t3 − (2 + 4 cos(θ)) t2 + 2

t2 − 1
≥ 0

which is true, provided that 4 cos2 (θ) t3 −
(2 + 4 cos(θ)) t2 + 2 ≥ 0 and t ≥ 1

2 cos(θ)+1−
√

2 cos(θ)+2
.

The proves Theorem 2. �

Since we could not find an explicit formula for t, in
Table 1, we presented the dilation t of cY (θ) for some

Table 1: The dilation t of cY (θ) for some angles θ with
π/3 ≤ θ < 2π/5 in which cY (θ) is a region-fault tolerant
t-spanner

θ t

60◦ 3.8662
61◦ 4.061
62◦ 4.4522
63◦ 4.9334
64◦ 5.5357
65◦ 6.311
66◦ 7.3458
67◦ 8.7958
68◦ 10.9724
69◦ 14.6021
70◦ 21.8645
71◦ 43.6581

angles θ with π/3 ≤ θ < 2π/5 in which cY (θ) is a
region-fault tolerant t-spanner. In the table, the angles
θ are expressed in degree instead of radian.

4 Conclusion

In this paper, we showed that for any π/3 ≤ θ < 2π/5,
the continuous Yao graph cY (θ) is a region-fault tol-
erant t-spanner with a constant value t. We close the
paper with the following open problem.

Is cY (θ) for any θ ≥ 2π/5, a C-fault tolerant
t-spanner for a constant value t?

References

[1] M. A. Abam, M. de Berg, M. Farshi, and J. Gudmunds-
son. Region-fault tolerant geometric spanners. Discrete
and Computational Geometry, 41(4):556–582, 2009.

[2] D. Bakhshesh, L. Barba, P. Bose, J.-L. D. Carufel,
M. Damian, R. Fagerberg, M. Farshi, A. van Renssen,
P. Taslakian, and S. Verdonschot. Continuous Yao
graphs. Computational Geometry, 67(Supplement C):42
– 52, 2018.

[3] L. Barba, P. Bose, J.-L. de Carufel, M. Damian,
R. Fagerberg, A. van Renssen, P. Taslakian, and S. Ver-
donschot. Continuous Yao graphs. In Proceedings of the
26th Canadian Conference on Computational Geometry,
CCCG’14, pages 100–106, August 2014.

[4] G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

.

10

ICCG 2018, Tehran, February 27, 2018

A Theoretical Proof of Angular Random Walk

Sepideh Aghamolaei∗ Mohammad Ghodsi†

Abstract

Covering a polygonal room with a memoryless robot
without distance measurement capability, i.e. a mini-
mal sensing robot, is important in the field of robotics.
A common algorithm for the aforementioned task is for
the robot to start moving in the direction of one of its
sensors randomly and to choose another direction when
it hits a wall. Current algorithms lack theoretical mod-
els and time complexity analyses. In this paper, we
model the environment from the robot’s point of view
with a directed graph and prove that this algorithm is
equivalent to a random walk on this graph. Therefore,
the angular random walk with 8 directions eventually
covers an orthogonal polygon if the polygon can be cov-
ered using such moves.

1 Introduction

Coverage (path) planning [6, 2] are problems that opti-
mize the coverage of the area of a polygon with holes,
with a continuous movement of a shape. The objective
functions are minimizing the number of passes over an
area, the number of stops and rotations and etc. Most of
these problems are NP-hard by reduction from covering
salesman problem [1].

Figure 1: Possible moves of a robot with 8 sensors based
on algorithm 1.

The robot is a disk with 8 sensors, each π/4 apart
from the next sensor. The robot can only move in the
direction of its sensors (see Figure 1). The robot has
minimal sensing [7] capabilities, i.e. it can only sense
non-geometric properties of the environment. In other

∗Department of Computer Engineering, Sharif University of
Technology, aghamolaei@ce.sharif.ir
†Department of Computer Engineering, Sharif University of

Technology,ghodsi@sharif.ir

words, only the closeness of points relative to each other
can be measured. This is usually modeled using the con-
cept of gaps. A gap is any discontinuity in the depth
of the environment that can be detected by a simple
robot. The notion of gaps is mostly used in gap navi-
gation trees [8], but here we only keep the set of visible
gaps. Also, assume the robot can rotate until one of
its sensors faces the wall perfectly. Random walk with
angle-changing after bumping into an object or wall has
already been used in practice [9, 3]. Those algorithms
choose an angle from [0, 2π] randomly [3], which based
on the rotation precision of their motor is in fact a set
of discrete angles. Here we discuss 4 and 8 directions,
aligned with the walls.

Random walks, unlike path planning methods and
simultaneous localization and mapping (SLAM) ap-
proaches, do not require a map of the environment and
perform simple operations. Therefore, performing ran-
dom walks needs simpler hardware, and less memory
and processing time per decision. One of the advantages
of using simple robots is their lower cost and power us-
age.

We define two types of rooms (polygon) for our anal-
ysis:

• Rectangular Room Environment: Assume a
room (B) is an axis-aligned a× b rectangle, divided
into square grid cells of width d, where d is the
diameter of the disk robot. The initial position of
the center of the robot must be on the center of a
cell. Assume it is possible to cover the rectangle
with d× d tiles, i.e. d divides a and b.

• Orthogonal Polygon Environment: A poly-
gon whose edges are vertical or horizontal. This
polygon is divided into cells of width d, where d is
the diameter of the disk robot. The initial position
of the center of the robot must be on the center
of a cell. Also, assume every opening between two
rectangular rooms is marked, i.e. the robot knows
when it leaves a room. Assume it is possible to
cover the polygon with d× d tiles.

The contribution of this paper is providing a model
that preserves the complications of a real environment,
while providing theoretical guarantees that the algo-
rithm will terminate and the amount of time it requires
is linearly dependent on the area of the polygon.

11

1st Iranian Conference on Computational Geometry

2 Preliminaries

We review some definitions in this section.
Abstract Sensor: A combination of a set of physical

sensors that provides a mathematically accurate mea-
surement capability. For example, a gap sensor is an
inaccurate distance measurement sensor.

Markov Model: (Also known as Markov Chain or
Markov Process) is a directed graph which is specified
along with a set of probabilities on its edges and a start
vertex. A Markov process starts from the start vertex
and chooses the next vertex with the probability speci-
fied on each edge. The hitting time of a Markov process
is the number of steps (edge transitions) required to
visit each vertex at least once, with high probability.
The state of a Markov model is a vector containing the
probability of being in each vertex. If a Markov model
reaches a state and never leaves it, we say it has con-
verged.

3 Angular Random Walk

In this section we introduce an algorithm for covering or-
thogonal polygons and provide a theoretical proof based
on Markov chain.

3.1 Algorithm 1

We call the following algorithm angular random
walk:

1. Follow a wall to find a corner.

2. Rotate until one of your sensors faces the wall

3. Repeat:

4. Choose one of the 8 directions or staying at the
same cell uniformly at random and move in that
direction,

5. Until you hit a wall

Algorithm 1 is similar to real-world implementations
such as [4, 9], but the idea behind those algorithms
comes from artificial intelligence algorithms.

Warm-up: Choosing The Number of Directions

A robot with orthogonal movements (4 directions) can-
not cover a room with algorithm 1. Assume the robot
starts from a corner of the room. Regardless of the
direction it chooses next, the robot can only travel the
boundary of the polygon, since it only changes direction
in corners of the polygon.

The robot cannot measure distances, so it is impos-
sible for this robot to stop anywhere between the two
corners. Therefore, there is no algorithm that can solve
this problem using this robot.

3.2 Covering The Area of A Rectangular Room

According to the definition of the robot and its move-
ments, there are 8 possible directions for entering or
exiting each cell (see Figure 1). The only limitation is

Figure 2: The movement graph for the topmost and
leftmost cell.

that if a direction is chosen, the robot must follow it
until reaching the boundary.

Construct the directed graph G = (V,E) by assigning
a vertex to each pair (ci, dj), where ci is a boundary cell
and dj is a direction. Then add an edge from pair (ci, di)
to (cj , dj) iff di = dj and if is possible to go from ci to
cj by moving only in direction di. The set of possible
movements starting from a corner cell is shown in Figure
2.

Theorem 1 Algorithm 1 is equivalent to a random
walk on graph G.

Proof. Every time the robot chooses a direction, since
only vertices assigned to that direction are used and
because the edges are directed, with probability 1 the
next vertex is the next grid cell in that direction, if
possible. If there are no more vertices in that direction,
we have reached a boundary vertex, which is connected
to all directions; So one of those directions can be chosen
randomly. �

We use a Markov chain to model this random walk,
and use its convergence to prove the termination of the
algorithm.

Lemma 2 The Markov model of graph G converges,
if uniform probabilities are used in the algorithm and
GCD(a, b) = 1.

Proof. It is enough to prove that G is strongly con-
nected and the greatest common divisor (GCD) of all
cycles in G is 1. Since we can go from any cell in any
direction to any other cell and any other direction, the
graph is strongly connected. The robot starts at one
corner and goes to another corner and then comes back.

12

ICCG 2018, Tehran, February 27, 2018

Figure 3: Three loops of the movement graph for a a×b
rectangle of lengths 2a, 2b and 3b.

If the direction the robot chooses faces a wall, it is con-
sidered a self-loop in the graph. As shown in Figure 3,
considering these three loop lengths gives, the GCD of
loops is at most:

GCD(2a, 2b, 3b) = GCD(a, b)

Therefore, if GCD(a, b) = 1, then the GCD of all cycle
lengths is 1. �

Theorem 3 The time complexity of the algorithm is
upper bounded by the cover time of the Markov model of
Lemma 2 times the time required to traverse the diam-
eter of a cell.

Proof. Each cell is repeated 8 times, once for each di-
rection. So, if the Markov model visits every vertex, it
is equivalent to covering the whole room. Since each
transition in this model is equivalent to entering a new
cell in the algorithm, this is also the time complexity of
the algorithm. �

3.3 Covering An Orthogonal Polygon

We assume the polygon is already partitioned into rect-
angular regions, called rooms. Assume we have an up-

Figure 4: An orthogonal polygon. The dashed lines
show possible divisions into rooms.

per bound M on the time required to cover a room.
After spending M units of time in a room, the robot
decides which room it should go to next.

Build a graph G of the Markov chain with a vertex
for each room and connect two vertices if their rooms
(rectangles) are adjacent. Each time the robot sees a

room, if it is passed time M , it chooses to stay in the
room (equivalent to traversing a self-loop in the Markov
chain) with probability q or leave it with probability
p. Since the sum of probabilities of each vertex in the
Markov chain should be 1, if a polygon has f rooms,
the probability is fp + q = 1, so p = 1−q

f . If the ac-
tual number of rooms is less, then q > 1 − fp. Note
that staying in the room just means choosing another
direction randomly.

This Markov chain converges, since

• G is connected, because the rooms are connected,
and

• it has self-loops (as a result of staying in the same
room), so the GCD of loops is 1, it eventually con-
verges.

To implement this, assume the number of rooms is
upper-bounded (f ≤ 20). Let p = 1

f = 1
20 , and as-

sume there is at least one room connected to less than
f rooms, (so there is always a self-loop in G).

Since f is the number of rooms (vertices) of the ran-
dom walk on G and the degree of each vertex is at most
f , then the hitting time is 2|V |.|E| [5], which here is
2f2.

Algorithm 2: Covering An Orthogonal Polygon

1. timer← 0.

2. Repeat 2f2 times:

3. Run algorithm 1.

4. If you see another room and timer > M , then

5. Stay with probability p or

6. leave with probability q and update timer← 0.

3.4 Initialization

In order to run the aforementioned algorithms, we need
to find upper bounds. Assume there is a fixed point on
the boundary. The robot can use O(1) memory to store
the values of f and M .

Figure 5: The visibility regions of Figure 4.

13

1st Iranian Conference on Computational Geometry

3.4.1 Algorithm 3

We use the number of regions in the visibility regions as
an upper bound for the number of rooms. Since rooms
are convex, each of them is at most one visible region,
so the number returned by the algorithm is at least as
much as the number of rooms.

A timer is required to measure M . We compute the
time required to cover the boundary and use it to upper
bound the area.

Algorithm for Counting the Rooms

Input: an orthogonal polygon, a fixed point on the
boundary

Output: a number f , a time upperbound M

1. f = 0.

2. Start timer (t← 0).

3. Traverse the boundary from the fixed point in a
ccw order.

4. If the visible region changes, f ← f + 1.

5. Stop timer and store its value t.

6. M ← t2

4 .

Return f,M .

3.5 Turn Complexity

The number of stops and turns in an algorithm might
make it slower in practice, compared to straight line
movements. This depends on the speed of the robot; for
slow robots the time complexity works better because
turning and moving take almost the same amount of
time, but for fast robots, the turn complexity is a better
measure since changing the moving direction is more
time consuming.

Modify the Markov model of Section 3.2 to include
only boundary cells, by shortcutting other vertices.
Since the robot only turns when it hits a wall, this model
includes all the turns the algorithm makes.

Corollary 4 The cover time discussed in Lemma 2 is
the turn complexity of the algorithm.

4 Conclusion

We used the memoryless property of Markov chains to
prove an algorithm for covering an orthogonal polygon
using a robot with O(1) memory. Our analysis shows
the performance of this algorithm depends on the con-
vergence rate of the Markov chain, and therefore, the
dimensions of the room(s). But finding formulas, or
proving the possibility of covering a room with such a
robot remains open, for example, the room in Figure 2

cannot be covered using a minimal sensing robot with
8 sensors. Note that the robot cannot stop at a non-
boundary cell because it requires exact distance mea-
surement.

Related open problems include providing models for
more complex polygons and polygons with holes. Using
Markov chain to analyze other robot’s state diagram
and creating randomized memoryless algorithms is also
important.

References

[1] E. M. Arkin and R. Hassin. Approximation algorithms
for the geometric covering salesman problem. Discrete
Applied Mathematics, 55(3):197–218, 1994.

[2] H. Choset. Coverage for robotics–a survey of recent re-
sults. Annals of mathematics and artificial intelligence,
31(1):113–126, 2001.

[3] K. M. Hasan, K. J. Reza, et al. Path planning algorithm
development for autonomous vacuum cleaner robots. In
Informatics, Electronics & Vision (ICIEV), 2014 Inter-
national Conference on, pages 1–6. IEEE, 2014.

[4] iRobot Corporation. irobot roomba 400 series manual.
http://www.irobotweb.com/~/media/Files/Support/

Home/Roomba/400/iRobot-Roomba-400-Manual.pdf?

sc_lang=en. Accessed: 31-August-2016.

[5] H. J. Karloff, R. Paturi, and J. Simon. Universal traver-
sal sequences of length no (log n) for cliques. Information
Processing Letters, 28(5):241–243, 1988.

[6] S. M. LaValle. Planning algorithms. Cambridge univer-
sity press, 2006.

[7] S. Suri, E. Vicari, and P. Widmayer. Simple robots with
minimal sensing: From local visibility to global geom-
etry. The International Journal of Robotics Research,
27(9):1055–1067, 2008.

[8] B. Tovar, L. Guilamo, and S. M. LaValle. Gap navigation
trees: Minimal representation for visibility-based tasks.
In Algorithmic Foundations of Robotics VI, pages 425–
440. Springer, 2004.

[9] Wikipedia. Roomba. https://en.wikipedia.org/

wiki/Roomba. Accessed: 12-August-2016.

14

ICCG 2018, Tehran, February 27, 2018

Answering Time-Windowed Queries of Contiguous Hotspots

Ali Gholami Rudi∗

Abstract

A hotspot of a moving entity is a region in which it
spends a significant amount of time. Given the location
of a moving object through a certain time interval,
i.e. its trajectory, our goal is to find its hotspots. We
consider axis-parallel square hotspots of fixed side
length, which contain the longest contiguous portion of
the trajectory. Gudmundsson, van Kreveld, and Staals
(2013) presented an algorithm to find a hotspot of a
trajectory in O(n log n), in which n is the number of
vertices of the trajectory. We present an algorithm
for answering time-windowed hotspot queries, to find
a hotspot in any given time interval. The algorithm
has an approximation factor of 1/2 and answers each
query with the time complexity O(log2 n). The time
complexity of the preprocessing step of the algorithm
is O(n). When the query contains the whole trajectory,
it implies an O(n) algorithm for finding approximate
contiguous hotspots.

Keywords: Trajectory, Hotspot, Geometric algorithms,

Time-windowed queries

1 Introduction

The identification of popular places or hotspots is an
important preprocessing step for analyzing trajectories
(Zheng mentions several interesting applications [11])
and the recent growth of trajectory data sets is increas-
ing the emphasis on efficient trajectory analysis algo-
rithms, hotspot identification algorithms not excepted.

Several heuristics have been proposed for identifying
hotspots (e.g. [8, 9, 10]). To pave the way for devising
accurate geometric algorithms for identifying hotspots,
some authors have formalized the definition of hotspots
and posed several questions about their identification
[3, 7]. One of the problems introduced by Gudmunds-
son et al. is that of finding a hotspot, i.e. a placement of
an axis-aligned square of fixed side length, which maxi-
mizes the time the entity spends inside it without leav-
ing it [7]. In other words, the square should contain
a contiguous sub-trajectory with the maximum dura-
tion. They also present an algorithm for this problem

∗Department of Electrical and Computer Engineering, Bobol
Noshirvani University of Technology, Babol, Iran. Email:
gholamirudi@nit.ac.ir.

with the time complexity O(n log n) (this time complex-
ity is best possible, as shown in the extended version of
this paper1). Their algorithm relies on the fact that
there exists a hotspot with at least one trajectory ver-
tex on its boundary. It finds the hotspot by testing the
squares, on one of whose boundaries lies a vertex of the
sub-trajectory.

We study the problem of answering time-windowed
hotspot queries. Each query specifies a time interval
and the goal is finding a hotspot for the sub-trajectory
of this interval (e.g. for finding the stay point of a
bird in August or finding the hotspot of a mobile de-
vice per day, week, and month). Time-windowed ge-
ometric queries have recently attracted much atten-
tion. Bannister et al. introduce a framework for an-
swering time-windowed queries and present algorithms
for answering such queries for three problems including
convex hull, for which they present an algorithm that
answers each query in poly-logarithmic time and per-
forms the preprocessing in O(n log n) time [1]. For the
time-windowed closest pair of points problem, Chan and
Pratt present a quadtree-based algorithm in the word-
RAM model of computation [5]. For decision problems,
Bokal et al. present time-windowed algorithms for de-
ciding hereditary properties (i.e., if a sequence has the
property, all of its subsequences do as well) [4]. Chan
and Prat improve Bokal et al.’s results by reducing time-
windowed decision problems to range successor prob-
lem and using dynamic data structures [6]. None of
these results, however, can be used directly for answer-
ing hotspot queries. Since its goal is finding a hotspot,
the problem cannot be stated as a decision problem and
the techniques used for time-windowed problems like
convex hull do not seem applicable to hotspot identifi-
cation.

In this paper we present an approximation algorithm
for answering time-windowed hotspot queries. It an-
swers each query with the time complexity O(log2 n)
and with an approximation ratio of 1/2. The space
complexity of the algorithm and the time complexity
of its preprocessing step is O(n). This also implies
a 1/2-approximation algorithm for finding contiguous
hotspots of whole trajectories in O(n) time. The low
complexity of this algorithm, its practicable data struc-
tures, and small approximation factor makes this algo-
rithm suitable for large real world trajectory data sets.

1https://arxiv.org/abs/1711.03795

15

1st Iranian Conference on Computational Geometry

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the notation used in this paper and in
Section 3 we present our algorithm. Finally, in Section 4
we conclude this paper and mention possible directions
for further studies.

2 Preliminaries and Notation

Let T be a polygonal trajectory, which describes the
location of a moving entity through a specific time in-
terval. We use T (t) to denote the entity’s location at
time t in trajectory T . In polygonal trajectories, the
location of the entity is recorded as different points in
time; these we call the vertices of the trajectory. These
vertices are linearly interpolated to decide the location
of the entity between two contiguous vertices. The sub-
trajectory that connects any two contiguous vertices of
the trajectory are its edges.

For each vertex v of trajectory T , let loc(v) de-
note its location and tstamp(v) denote its time-stamp.
With slight abuse of notation, we use vertices and time-
stamps interchangeably. Thus, u < v for vertices u and
v means tstamp(u) < tstamp(v). For two vertices or
time-stamps u and v of trajectory T , Tuv denotes the
sub-trajectory from u to v.

For a square r of fixed side length s, the weight of r
with respect to trajectory T is the maximum duration
of a contiguous sub-trajectory of T contained in r. A
hotspot of trajectory T is an axis-parallel square of fixed
side length s with the maximum weight. Every square
discussed in this paper has fixed side length s and is
axis-parallel. We may not mention these constraints
explicitly hereafter.

3 An Algorithm for Answering Time-Windowed
Queries

To improve the readability, we first present the algo-
rithm with the assumption that queries start and end
with the time-stamp of a trajectory vertex and prove
its approximation factor. We then discuss how to con-
struct the data structures required in the algorithm. Fi-
nally, we handle general queries that may start or end at
a time different from the time-stamps of all trajectory
vertices and show that this preserves the approximation
factor.

3.1 The Main Algorithm

For any trajectory vertex v, we define hotend−(v)
to denote the start of a sub-trajectory of T ending
at v with the maximum duration that can be con-
tained in a square, hotsquare−(v) to denote one such
square, and hotdur−(v) to denote its duration. Simi-
larly, hotend+(v) denotes the end of a sub-trajectory of
T starting at v with the maximum duration that can

be contained in a square, hotsquare+(v) denotes one
such square, and hotdur+(v) denotes its duration. The
implementation of these functions is described in Sec-
tion 3.2.

We also define hotdur−(u, v) as the maximum
value of hotdur−(w) for all vertices like w in Tuv,
hotsquare−(u, v) as its corresponding square, and
hotend−(u, v) as its corresponding starting vertex, in
which u and v are two trajectory vertices. We define
hotdur+(u, v), hotsquare+(u, v), and hotend+(u, v) sim-
ilarly. The implementation of these functions are also
explained in Section 3.2.

We now describe the algorithm for answering query
(u, v), to find an approximate hotspot of sub-trajectory
Tuv. As mentioned before, here we assume that both u
and v are trajectory vertices.

1. If uv is an edge of the trajectory, it is trivial to find
its hotspot by considering the largest portion of the
edge uv that can fit in a square.

2. Let w be a trajectory vertex between u and v such
that the number of vertices in sub-trajectories Tuw
and Twv differ by at most one. A binary search
between the vertices of Tuv can find w. Note that
the duration of sub-trajectories Tuw and Twv may
differ greatly.

3. Let u′ be hotend−(w, v) and let v′ be
hotend+(u,w). There are three cases to con-
sider.

(a) If u′ < u and v < v′, hotsquare−(w, v)
contains Tuw and hotsquare+(u,w) contains
Twv; let r be hotsquare−(w, v) if the dura-
tion of Tuw is greater than that of Twv and
hotsquare+(u,w), otherwise. Given that the
duration of Tuv is the sum of the durations of
Tuw and Twv, the weight of r is at least half
of the weight of the hotspot of Tuv.

(b) Now suppose u < u′ and v′ < v. Any hotspot
of Tuv either starts at a vertex of Tuw or ends
at a vertex of Twv. Consider the first case:
if a hotspot of Tuv starts at a vertex of Tuw,
its weight should be equal to hotdur+(u,w).
For the second case, we can similarly argue
that the weight of a hotspot that ends at
a vertex of Twv is hotdur−(w, v). There-
fore, we can return either hotsquare+(u,w) or
hotsquare−(w, v) based on the relative values
of hotdur+(u,w) and hotdur−(w, v).

(c) The remaining case is when u′ < u and v′ < v
(the case when u < u′ and v′ < v is similar and
is omitted for brevity). Again, any hotspot of
Tuv either starts at a vertex of Tuw or ends at
a vertex of Twv. If a hotspot of Tuv starts at a

16

ICCG 2018, Tehran, February 27, 2018

vertex of Tuw, its weight equals hotdur+(u,w).
Otherwise, the hotspot should start and end
at two vertices of Twv. We perform this al-
gorithm recursively for the interval (w, v) to
find the approximate hotspot r for this inter-
val. We can return either hotend+(u,w) or r
based on their weight.

The time complexity and approximation factor of this
algorithm is shown in Theorem 1.

Theorem 1 Given a trajectory T and after some
preprocessing for computing the functions hotdur,
hotsquare, and hotend, for each query (u, v) we can find
a square, whose weight is at least half of the weight of
the hotspot of Tuv, with the time complexity O(log2 n).

Proof. The correctness of the algorithm is explained
in its description. For the approximation ratio, con-
sider the tree formed by the recursive invocations of the
algorithm for a query. The only step of the algorithm
that returns an approximate result is step 3.a, which
appears only once and as a leaf in this tree. Therefore
the weight of the square returned by the algorithm is at
least half of the weight of a hotspot.

For the time complexity, note that the algorithm is in-
voked recursively only once in step 3.c and for a query
containing half as many points as the original query.
In each invocation, hotend and hotdur functions, the
time complexity of both of which is O(1), are called a
constant number of times. Therefore, the time com-
plexity of answering a query containing m vertices is
T (m) ≤ T (m/2) + O(logm) (the O(logm) term is for
finding w in step 2). Solving this recurrence yields
T (n) = O(log2 n) as required. �

3.2 Preprocessing

We next show how to implement functions hotend,
hotdur, and hotsquare for single vertices. The multi-
vertex version of these functions can be implemented
using Range Minimum Query (RMQ) data structures.
RMQ data structures support finding the minimum (or
the maximum) of any contiguous interval of a sequence.
Using Cartesian trees, RMQ can be implemented with
linear space and O(1) query complexity (for details, con-
sult [2]).

In the following algorithm, we use MinQueue data
structure, supporting the following operations: Insert
for inserting an item, Remove for removing the oldest
item, and Min for finding the item with the minimum
value in the queue (MaxQueue data structure is similar
with a Max operation instead). There exists a clever im-
plementation of MinQueue (and MaxQueue) using two
stacks, in which the time complexity of all three opera-
tions is O(1).

We now describe how to compute hotdur−(v).
hotend−(v) and hotsquare−(v) can be computed in
parallel but are omitted for brevity. Also note that
hotdur+(v), hotend+(v), and hotsquare+(v) can be im-
plemented similarly by negating the time-stamps of the
vertices. Suppose minx and miny are instances of Min-
Queue and maxx and maxy are instances MaxQueue and
are initially empty. The following steps are performed
for every vertex of T ordered by their time-stamps.

1. Define (x, y) as loc(v). Insert v with the value x
into minx and maxx. Insert v with the value y into
miny and maxy.

2. Repeatedly remove the oldest items from each of
the four queues, until both Max(maxx)−Min(minx)
and Max(maxy)−Min(miny) are at most s. Defin-
ing u as the oldest item in any of the queues, the
sub-trajectory Tuv is the longest that ends at ver-
tex v, starts at a vertex of T , and can be contained
in a square.

3. Let u′ be the vertex before u in T (the last vertex
removed from the queues). Based on the condition
in the previous step, Tu′v cannot be contained in
a square but Tuv can be. To find hotend−(v), we
need to find p, the earliest point on the edge u′u
such that Tpv can be contained in a square. To do
so, consider the four ways of aligning a corner of a
square with a corresponding corner of the bounding
box of Tuv, and choose the one that contains the
longest portion of u′u.

Theorem 2 The time and space complexity of the pre-
processing step for functions hotdur, hotsquare, and
hotend is O(n).

Proof. All steps of the preprocessing perform O(1)
computation for each vertex except step 2, which may
extract many items from the queues. However, since
only n items are inserted into each queue and each item
can be removed at most once, O(n) items are removed
from the queues during the whole algorithm. Therefore,
the time complexity of the algorithm is O(n). Since the
Cartesian tree-based RMQ implementation of the multi-
vertex version of the functions has linear space and time
complexity, the time and space complexity of the pre-
processing is thus likewise linear. �

3.3 Handling General Queries

Theorem 3 shows how to handle queries whose start or
end does not coincide with the time-stamp of a trajec-
tory vertex.

Theorem 3 After O(n) preprocessing for a trajectory
T with n vertices, time-windowed hotspot queries can
be answered approximately with the time complexity

17

1st Iranian Conference on Computational Geometry

O(log2 n). Each query is specified as two time-stamps x
and y (x < y), which may not coincide with the time-
stamp of any trajectory vertex. The algorithm returns a
square whose weight is at least half of the weight of the
hotspots of Txy.

Proof. For the query (x, y), let u be the first vertex on
the trajectory at or after x and v be the first vertex at
or before y (they can be found using binary search on
the vertices of T in O(log n)).

If the query is totally contained in a trajectory edge,
a hotspot can be found trivially by finding a square
that contains the longest portion of the edge. Other-
wise, suppose square r is a hotspot of Txy and let x′

and y′ denote the start and end of a sub-trajectory of
Txy contained in r with the maximum duration. There
are two cases to consider. If u ≤ x′ and y′ ≤ v,
based on Theorem 1 we can find an approximate hotspot
with an approximation factor of 1/2. Otherwise, sup-
pose x′ < u (handling the case v < y′ is similar and
is omitted). Suppose Tx′y′ contains u (otherwise we
can move r towards u without changing its weight,
since the r is on a single edge). Clearly, the weight
of r equals the sum of the durations of Tx′u and Tuy′ ;
the former is at most hotdur−(u) and the latter is
at most hotdur+(u). Therefore, the weight of either
hotsquare−(u) or hotsquare+(u) in respect to Txy is at
least half of the weight of r. �

4 Concluding Remarks

The algorithm presented in this paper is very fast, even
for finding an approximate hotspot of the whole trajec-
tory. Querying the whole trajectory after preprocessing
yields Corollary 4.

Corollary 4 An approximate contiguous hotspot of a
trajectory can be found with the time complexity O(n)
and an approximation ratio of 1/2.

Several related problems seem interesting for further
investigation. It may be possible to include the side
length of the hotspot s in the query by returning a se-
quence from the functions introduced in Section 3.1;
an algorithm to answer these extended queries would
be very interesting. The approximation ratio may be
improved; this looks very important, especially from a
practical point of view, for querying large trajectory
data sets. Also, it seem interesting to answer time-
windowed queries of non-contiguous hotspots (see [7]
for details).

Acknowledgements

The author wishes to thank Dal for discussing this prob-
lem in Challenging Thursdays 28.

References

[1] M. J. Bannister, W. E. Devanny, M. T. Goodrich, J. A.
Simons, and L. Trott. Windows into geometric events:
Data structures for time-windowed querying of tempo-
ral point sets. In The Canadian Conference on Compu-
tational Geometry, pages 11–19, 2014.

[2] M. A. Bender and M. Farach-Colton. The LCA problem
revisited. In LATIN, pages 88–94, 2000.

[3] M. Benkert, B. Djordjevic, J. Gudmundsson, and
T. Wolle. Finding popular places. International
Journal of Computational Geometry and Applications,
20(1):19–42, 2010.

[4] D. Bokal, S. Cabello, and D. Eppstein. Finding all
maximal subsequences with hereditary properties. In
Symposium on Computational Geometry, pages 240–
254, 2015.

[5] T. M. Chan and S. Pratt. Time-windowed closest pair.
In The Canadian Conference on Computational Geom-
etry, pages 141–144, 2015.

[6] T. M. Chan and S. Pratt. Two approaches to build-
ing time-windowed geometric data structures. In Sym-
posium on Computational Geometry, pages 28:1–28:15,
2016.

[7] J. Gudmundsson, M. J. van Kreveld, and F. Staals.
Algorithms for hotspot computation on trajectory data.
In SIGSPATIAL/GIS, pages 134–143, 2013.

[8] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y.
Ma. Mining user similarity based on location history.
In GIS, page 34, 2008.

[9] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun.
Where to find my next passenger. In UbiComp, pages
109–118, 2011.

[10] N. J. Yuan, Y. Zheng, X. Xie, Y. Wang, K. Zheng,
and H. Xiong. Discovering urban functional zones us-
ing latent activity trajectories. IEEE Transactions on
Knowledge and Data Engineering, 27(3):712–725, 2015.

[11] Y. Zheng. Trajectory data mining - an overview. ACM
Transactions on Intelligent Systems and Technology,
6(3):29:1–29:41, 2015.

18

ICCG 2018, Tehran, February 27, 2018

On the Generalized Minimum Spanning Tree in the Euclidean Plane

Homa Ataei Kachooei∗ Mansoor Davoodi† Dena Tayebi ‡

Abstract

We aim at finding a minimum spanning tree consisting
of exactly one point per cluster, for a set of n points
in the plane partitioned into k < n clusters. We show
that this problem is NP-complete even if every cluster
contains two points with equal y coordinates. Further,
we show that this problem does not have an FPTAS
unless P = NP .
Keywords: Minimum Spanning Tree, NP-

completeness, Approximation Algorithm

1 Introduction

In this paper, we study Generalized Minimum Spanning
Tree (GMST) problem in the plane. First we review the
GMST problem on graphs. Given a connected undi-
rected graph G = (V,E) in which nodes are partitioned
into k clusters:

V = V1 ∪ V2 ∪ ∪ Vk ∀i 6= j, Vi ∩ Vj = ∅, (1)

where Vi is a subset of nodes. The GMST problem is to
find a Minimum Spanning Tree (MST) which consists
of exactly one point from each cluster.

The GMST problem on graphs was proved NP-hard
by a reduction from the Vertex Cover problem [9]. It was
also proved that the GMST problem on graphs cannot
be approximated within any constant factor [10]. Fur-
thermore when G = (V,E) is a tree, the problem is
NP-hard [10]. However, there is an approximation al-
gorithm for the GMST problem when the cluster size
is bounded by a constant ρ. In this case, the GMST
problem can be approximated to within 2ρ [11].

A geometric version of the GMST problem was stud-
ied with grid clustering. In this version, the graph
was considered complete and the nodes are placed in
a (r × l)-grid and weight of each edge is the distance
between two nodes. The nodes belonging to a cell of
the grid make a cluster. A PTAS for the GMST prob-
lem with grid clustering was proposed in [3]. Moreover,
a (1 + 4

√
2 + ε)-approximation algorithm was presented

for the GMST problem with the grid clustering [1]. The
existence of a PTAS shows that the GMST problem

∗ataei.homa@gmail.com
†Institute for Advanced Studies in Basic Sciences (IASBS),

Zanjan, Iran, mdmonfared@iasbs.ac.ir
‡denatayebi@yahoo.com

with grid clustering is easier than the GMST problem.
An alternative version of the GMST problem focuses
on finding the MST which consists of at least one point
per cluster [7]. The NP-completeness of this version
was shown in [7] including the case where each cluster
contains three points. Additionally, it was shown that
this version cannot be approximated within any con-
stant factor [12]. Also it was shown that this version
of the GMST problem with grid clustering is strongly
NP-hard even if non-empty grid cells are connected and
each grid cell (cluster) contains at most two points [5].
Further, a (r × l)-grid (r ≤ l) was used in [5] and a
dynamic programming algorithm was presented which
solves this version in O(lρ6r234r

2

r2) time. Note that if
r or l are bounded, this algorithm is polynomial. Fer-
emans et al. [5] using the dynamic programming algo-
rithm, presented a PTAS when all non-empty grid cells
are connected and the number of non-empty grid cells
is superlinear in r and l.

The Class Steiner Tree (CST) problem (known also
as Group Steiner Tree (GST) problem) is similar to the
GMST problem. A short review of the CST problem is
provided in the following.

Given a connected undirected graph G = (V,E) in
which the nodes are partitioned into disjoint sets, such
that:

V = S ∪R1 ∪ ... ∪Rk, (2)

where Ri is a required class for i = 1, 2, ..., k and S is
Steiner class, the CST problem tries to find an MST
which include at least one node per required class. The
CST problem was proved to be NP-hard even if there is
no Steiner node, the weight of all edges are unit and the
nodes degree are less than or equal to three [6]. Finally,
the CST problem cannot be approximated within any
constant factor even for trees without Steiner node and
unit edges [6].

As pointed out before, the focus of this paper is on
studying the GMST problem in the plane (not graph).
Hence, for a given set P containing n points in the plane
which is partitioned into k clusters:

P = P1 ∪ P2 ∪ ∪ Pk ∀i 6= j, Pi ∩ Pj = ∅, (3)

the GMST problem in the plane tries to find an MST
which consists of exactly one point from each cluster.

We prove that the GMST problem in the plane is NP-
complete even if each cluster contains two points with
equal y coordinates. We further prove that this problem

19

1st Iranian Conference on Computational Geometry

does not have an FPTAS unless P = NP . This version
is a simple case of the GMST problem.

2 NP-completeness of the GMST Problem in the
Euclidean Plane

By a reduction from the planar 3SAT problem we prove
that the GMST problem in the Euclidean plane is NP-
complete.

Consider the 3SAT problem where C =
{c1, c2, ..., cm} is the set of clauses and V =
{v1, v2, ..., vn} is the set of variables. Create a
graph G = (U,E) for every instance of the 3SAT
problem such that:

U = C ∪ V, (4)

and
E = E1 ∪ E2, (5)

where E1 and E2 are:

E1 = {(ci, vj) | vj ∈ ci or vj ∈ ci} (6)

and

E2 = {(vj , vj+1) | 1 ≤ j < n} ∪ {(vn, v1)}. (7)

The set of all edges in E2 is called spinal path [4].
There is a node for each variable and for each clause in
the graph G, resulting in |U | = |C| + |V |. Draw one
edge between a variable node and a clause node in G, if
and only if the clause contains a literal of the variable.
The planar 3SAT problem includes all instances of the
3SAT problem with similar planar graphs. The planar
3SAT is proved to be NP-complete by a reduction from
the 3SAT problem [8].

Theorem 1 The GMST problem in the plane is NP-
complete. This claim is true even under the constraint
that every cluster contains two points with equal y co-
ordinates. Also the GMST problem does not have an
FPTAS unless P = NP .

Proof. We utilize a similar approach to that of The-
orem 7 in [4] for demonstrating the correctness of the
theorem. As such, We perform the proof by using a re-
duction from the planar 3SAT problem for the GMST
problem.

Every instance of the planar 3SAT problem should be
converted to an instance of the GMST problem in the
plane. First, we design two gadgets for the variables
and clauses called variable gadget and clause gadget , re-
spectively. The design of these gadgets is based on some
clusters of points where every cluster consists of a pair
of points. The designed gadgets in the graph of φ are
replaced as follows: if a node in the graph of φ is corre-
sponding to a variable in φ, it is replaced by a variable

gadget and if it is corresponding to a clause in φ, it
is replaced by a clause gadget. Consequently, we re-
place all the nodes in the graph of φ with the gadgets.
One should ensure that the number of clusters (pairs
of pionts) in this reduction is polynomially bounded
in the size of φ. Therefor, we use a special drawing
graph called orthogonally drawing [2]. In the orthogo-
nally drawing each node is shown with a rectangle and
each edge is denoted by a sequence of vertical and hor-
izontal segments. The orthogonally drawing provide a
practical mean to draw the graph in the defined space.
To continue, we need the Theorem 2 from [2]. The the-
orem is provided below.

Theorem 2 [12, Theorem 4] Let H be a simple graph
without nodes of degree ≤ 1, where n is the number of
nodes and m is the number of edges. Then H has an
orthogonally drawing in an (m+n

2 × m+n
2)-grid with one

bend per edge. The box size of each node v is at most
deg(v)

2 × deg(v)
2 . It can be found in O(m) time.

At this stage, we want to convert the planar 3SAT
instance to a GMST instance. Therefor we first draw
the orthogonally drawing and then, replace the variable
gadgets with the variables and the clause gadgets with
the clauses.

2.1 Variable Gadget

For each variable in the planar 3SAT instance, we de-
sign a gadget which consists of k cluster, such that k
is an even number and 4 ≤ k ≤ 2c+ 4, where c is the
number of clauses that include this variable. Consider
two variables i and j such that 1 ≤ i ≤ k. Variable
i is the number of the clusters and j is an index of i
which is equivalent to the number of points in the clus-
ter. Because there are only two points in every cluster,
we set j = 0 or j = 1. The j = 0 and j = 1 cases
correspond to the first and second points in the cluster,
respectively. If the coordinates of the first point in the
first cluster is denoted by (x, y), then for every i and j
where 1 ≤ i ≤ k − 1 and j = 0, 1, coordinates of point
ij are

(x+ 2(i− 1) + j, y + ((i+ 1) mod 2)).

This way, k−1 clusters are being embedded in the plane
and the coordinates of the points in the cluster k are
(x−
√

5, y) and (x+2(k−1)−1+
√

5, y). Consequently,
the placement of these points in the plane leads to a
structure which is a part of the variable gadget. We
denote this structure by A.

Structure A with k = 8 is depicted in Figure 1. Here,
the location of the points in the plane is not important
but the distance between them is an issue.

The proof of the Theorem 1 and the design for the
variable gadget are not completed yet, we need Lemma
3 in that regard.

20

ICCG 2018, Tehran, February 27, 2018

.

Figure 1: Structure A. The segment between two points
shows that they are in a cluster. Also the right side and
the left side points are in a cluster.

Lemma 3 In the structure A with k clusters, there are
two different choices from clusters which lead to the op-
timal solution of the GMST problem. In one of these so-
lutions the right side points choose in all clusters and in
other solution the left side points choose in all clusters.
The weight of the Euclidean MST (EMST) for these so-
lutions is

√
5(k − 1). Further, the weight of EMST in

every other selection of points except the aforementioned
two, is at leas 0.1 more than the weight of an optimal
solution.

Proof. See Appendix at the end of the article. �

With regard to this Lemma, there are two possible so-
lutions for the GMST problem for the structure A. We
assume where the right side points are selected from all
clusters to be equivalent to the case for which the vari-
able is True. Moreover we assume where the left side
points are selected from all clusters to be equivalent to
the case for which the variable is False.

These assumptions along with Lemma 3, provide the
necessary requirements to complete the design of the
variable gadgets. Suppose that the number of clauses
containing this variable is equal to c. For each of these
clauses, we posit a fixed point at a distance of 2 units
to one of the right side points in the direction of y.
Similarly, for each clause containing a variable negation,
a fixed point is placed at a distance of 2 units of one of
the left side points in the direction of y.

Because of these clauses are located above or below
this variable, we locate mentioned points above or below
the gadget. Additionally, we locate two points for spinal
path connections such that they don’t have any effect
on choosing the right or the left side points. Therefore,
these points should be selected in a way that they have
the same distances from the nearest right and left side
points in the structure A. So, the location of these
points are selected as (x + 0.5, y − 1) and (x + 2(k −
2) + 0.5, y − 1). Indeed, these are the endpoints of the
edges that establish the spinal path connections.

Figure 2 is an example of a variable gadget. This
Figure illustrates the variable such as z attending in
three clauses which z comes in one clause and z in the
other two.

2.2 Clause Gadget

Consider a sequence of points which are located in unit
distances along a line. A clause gadget is formed from
three of the mentioned sequences that collide at a point

..

z

.

z

.

z

.

SpinalPath

.

SpinalPath

Figure 2: An example of the variable gadget

[4]. Figure 3a is related to a node which is corresponding
to a clause in the orthogonally drawing. If we replace
this node with a clause gadget Figure 3b is obtained.

2.3 Reduction

We scale up orthogonally drawing with factor of 2 and
replace the graph nodes of the orthogonally drawing
with the introduced gadgets. This is also the case for
the graph edges which are exchanged with a sequence
of points located in a unit distances along the edges.

As pointed out before, in the orthogonally drawing,

each node is a box with the maximum size of deg(v)
2 ×

deg(v)
2 . Designed gadget may not fit into the intended

box in the orthogonally drawing, but size of this gadget
is at most (4(deg(v)−1)+2

√
5+1)×5 which is bounded

in the size of the box.
So far we converted each planar 3SAT instance to a

GMST instance. The next step at this point is to show
that every solution of the GMST problem is a solution
of the planar 3SAT problem. We used the orthogonally
drawing which is drawn in a (m+n

2 × m+n
2)-grid, and

the drawing is polynomially bounded in the size of the
planar 3SAT instance. Hence the number of used fixed
points in this reduction is polynomially bounded in the
size of the planar 3SAT instance. These fixed points
have a unique MST with constant weight. Therefor,the
MST obtained from the gadgets themselves and their
connections determine the weight of the MST. Sum of
the MST weight of the connection between the spinal
path and the gadgets, and the MST weight of the fixed
points is denoted byWedges. Also the MST weight of the

.

(a) A clause node

.

(b) A clause gadget

Figure 3: Replacing a clause node in the orthogonally
drawing with a clause gadget

21

1st Iranian Conference on Computational Geometry

gadgets and gadgets connections to edges is denoted by
Wclusters. So the total weight of MST is sum of Wedges

and Wclusters:

Wtotal = Wedges +Wclusters. (8)

In the optimal solution of MST, the connectivity
should be reached by minimum cost. Wedges has a con-
stant value, no matter which points are selected. The
connections between spinal paths and variable gadgets
have constant weight and these connections cause all
variable gadgets to be connected to each other. Now
we investigate connection of the edges to the variable
gadget. In the optimal solution of the GMST problem
each clause gadgets should be connected to a variable
gadget and the cost of each connection is 2 units. So
the total cost of these connections is twice the number
of all clauses. If only the right or the left side points
are selected in each gadget, the weight of the obtained
MST can be calculated as :

Wclusters = (
√

5(R− n)) + 2c+ 2n
√

4 + (0.5)2, (9)

where n is the number of variables, c is the number of
clauses and R is the number of all clusters. In this case,
each gadget is just connected to a clause containing the
variable or its negation. This means there is a True
assignment for the planar 3SAT problem. If Wclusters

is more than this value, there is at least one variable
gadget which is connected to a clauses containing the
variable and a clause containing variable negation. This
means there is no True assignment for the planar 3SAT
problem.

Now we show that the GMST problem does not have
an FPTAS unless P 6= NP . Consider the existence
of an FPTAS for the GMST problem. Given a planar
3SAT instance, we build the GMST problem input as
explained previously and calculate Wtotal. We deter-
mine the ε value such that ε < 0.1

Wtotal
. So a (1 + ε)-

approximation solution for the GMST problem can be
used to verify whether there is a True assignment for the
planar 3SAT problem or not. Since the planar 3SAT is
NP-Hard, we can conclude there is no FPTAS for the
GMST problem unless P 6= NP . �

3 Discussion

The maximization version of this problem has not been
studied yet. In this version, given a set P consisting
points in the plane which is partitioned into k clusters.

P = P1 ∪ P2 ∪ ∪ Pk ∀i 6= j, Pi ∩ Pj = ∅. (10)

The GMST problem in the plane is to find maximum
MST which consists of exactly one point from each clus-
ter. Complexity of this problem and whether it has ap-
proximation algorithm with constant factor, would be
studied in future.

References

[1] B. Bhattacharya, A. Ćustić, A. Rafiey, A. Rafiey, and
V. Sokol. Approximation algorithms for generalized mst
and tsp in grid clusters. In Combinatorial Optimization
and Applications, pages 110–125. Springer, 2015.

[2] T. C. Biedl and M. Kaufmann. Area-efficient static and
incremental graph drawings. In European Symposium
on Algorithms, pages 37–52. Springer, 1997.

[3] F. Corinne, G. Alexander, et al. An approximation
scheme for the generalized geometric minimum span-
ning tree problem with grid clustering. Technical re-
port, 2004.

[4] R. Dorrigiv, R. Fraser, M. He, S. Kamali, A. Kawa-
mura, A. López-Ortiz, and D. Seco. On minimum-and
maximum-weight minimum spanning trees with neigh-
borhoods. Theory of Computing Systems, 56(1):220–
250, 2015.

[5] C. Feremans, A. Grigoriev, and R. Sitters. The geomet-
ric generalized minimum spanning tree problem with
grid clustering. 4OR: A Quarterly Journal of Opera-
tions Research, 4(4):319–329, 2006.

[6] E. Ihler. Minimum rectilinear steiner trees for intervals
on two parallel lines. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages
123–134. Springer, 1992.

[7] E. Ihler, G. Reich, and P. Widmayer. On shortest net-
works for classes of points in the plane. In Computa-
tional Geometry-Methods, Algorithms and Applications,
pages 103–111. Springer, 1991.

[8] D. Lichtenstein. Planar formulae and their uses. SIAM
journal on computing, 11(2):329–343, 1982.

[9] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the gen-
eralized minimum spanning tree problem. Networks,
26(4):231–241, 1995.

[10] P. C. Pop. The generalized minimum spanning tree
problem. Twente University Press, 2002.

[11] P. C. Pop, W. Kern, and G. Still. An approximation
algorithm for the generalized minimum spanning tree
problem with bounded cluster size. 2001.

[12] S. Safra and O. Schwartz. On the complexity of approx-
imating tsp with neighborhoods and related problems.
computational complexity, 14(4):281–307, 2006.

22

ICCG 2018, Tehran, February 27, 2018

Appendix

We prove lemma 3 in this part.
Lemma 3. Proof. In the structure A with k clusters

(pairs of points), there are two different choices from every
cluster which lead to optimal solution of the GMST problem.

Proof 2.1.in the structure A, every cluster regardless of
choice of points will be connected to the next cluster in solu-
tion of EMST. Also cluster k will be connected to the cluster
1 or k− 1. We consider L and R symbols, which are equiva-
lent to selection of the left side point and the right side point
in a cluster, respectively. Any selection of points in the clus-
ters are shown with sequence of these symbols. As an exam-
ple, LRR sequence shows that the left side point is chosen in
the first cluster and the right side point is chosen in the sec-
ond and third clusters. Now, we show the optimal solutions
are LLL....L sequence or RRR....R sequence. In these cases
because in EMST every cluster connects to the next cluster,
weight of optimal solution of EMST is

√
5(k− 1). We prove

this claim for LLL....L sequence, and for RRR....R sequence
will be proved similarly. In order to prove this claim, we as-
sume the right side point is chosen in one of the clusters. It
means we have LL...LRL...L. Consequently, in the cluster
in which the right side point is chosen and in the next and
the former cluster, EMST is as Figure 4a or Figure 4b and in
both cases weight of EMST is

√
10+
√

2. Therefore weight of
EMST in the entire structure is ((k−3)

√
5+
√

10+
√

2) and it
is (
√

10+
√

2−2
√

5) ≈ 0.1 more than weight of EMST when
the left side points are chosen in all clusters. When the right
side points are chosen in more than one consecutive cluster it
means we have LL...LRR...RL...L, yet the weight of EMST
is ((k− 3)

√
5 +
√

10 +
√

2) which is (
√

10 +
√

2− 2
√

5) ≈ 0.1
more than Weight of EMST when the left side points are
chosen in all clusters. Consequently every time when the
consecutive left side points are chosen, at least 0.1 is added
to the weight of EMST.

As an example in LL...LR...RL...LR...RL...LL sequence,
the weight of EMST is 0.2 more than when all of the right
side points are chosen in all clusters. Optimal solutions of
structure A with k = 8 is shown in Figure 5. �

.

(a)

.

(b)

Figure 4: Part of EMST in LL...LRL...L sequence

.

(a)

.

(b)

Figure 5: Optimal solutions of structure A with k = 8.

23

24

ICCG 2018, Tehran, February 27, 2018

Routing in Well-Separated Pair Decomposition Spanners

Fatemeh Baharifard∗ Majid Farhadi† Hamid Zarrabi-Zadeh†

Abstract

In this paper, we present a local routing scheme for
the well-separated pair decomposition (WSPD) span-
ners. Given a point set P in the plane, a WSPD span-
ner is a geometric graph whose vertex set is P , and
for each pair (A,B) in the well-separated pair decom-
position of P , an edge is added to the graph from an
arbitrary point a ∈ A to an arbitrary point b ∈ B. It is
well-known that such a graph is a (1 + ε)-spanner of P ,
where ε > 0 is an input parameter used for construct-
ing the well-separated pair decomposition. Our routing
scheme assigns to each point p ∈ P a routing table of
size O(1

ε2 logα), where α is the ratio of the furthest dis-
tance to the closest distance in P . It can then locally
route a message from any arbitrary point p to any point
q in P along a path whose length is at most 1 + ε times
the Euclidean distance between the pair of points. The
WSPD construction considered in this paper is based
on compressed quadtrees. To the best of our knowl-
edge, this is the first time that a local routing scheme
with an optimal competitive routing ratio is considered
for this famous class of WSPD spanners.

1 Introduction

A geometric graph G is a t-spanner for a point set P ,
if for each pair of points p and q in P , there is a path
in G between p and q, whose length is at most t times
the Euclidean distance between p and q. The minimum
t such that G is a t-spanner of P is called the spanning
ratio of G.

One of the most important problems in communica-
tion networks is to send/route a message from a source
point to any other target point in such a way that the
total distance traveled by the message is at most a con-
stant times the shortest path or Euclidean distance be-
tween the two points. Network routing strategies such
as Dijkstra’s algorithm [10] require knowledge of the
whole network topology in order to compute a short
route. In many settings, this assumption is impractical,
and the routing algorithm is supposed to work without
knowing the full structure of the graph. Therefore, a
local routing strategy is usually preferred, meaning that

∗School of Computer Science, Institute for Research in Funda-
mental Sciences (IPM), f.baharifard@ipm.ir
†Department of Computer Engineering, Sharif University of

Technology, m farhadi@ce.sharif.edu, zarrabi@sharif.edu

the algorithm can route the message to the target us-
ing only information stored in the message itself and in
the current node [15]. If the information stored in the
current node is of size k, we say that the local routing
algorithm has a routing table of size k. Moreover, a lo-
cal routing algorithm A is called µ-memory if it uses a
memory of size µ stored with the message [4]. The algo-
rithm A is c-competitive if the total distance traveled by
the message is not more than c times the Euclidean dis-
tance between source and destination. The minimum
c such that a routing algorithm A is c-competitive is
called the routing ratio.

Related Work. Recently, a stream of research has ex-
plored local routing algorithms for some geometric span-
ners such as Delaunay triangulations and θ-graphs (for
definitions, see [5, 9]). Chew [9] was the first to de-
scribe a local routing algorithm on the L1-Delaunay tri-
angulation with a routing ratio of

√
10, using only the

information of the target point, the current point, and
all neighborhood of the current point. Subsequently,
local routing algorithms using the same set of informa-
tion were presented for TD-Delaunay triangulation by a
spanning ratio of 5/

√
3 [3], and for the standard Delau-

nay triangulation by a spanning ratio of 5.90 [1]. In [5],
a θ-routing algorithm is described which has a constant
routing ratio on all θk-graphs with k ≥ 7. Moreover, a
deterministic local routing scheme with a routing ratio
of 2 is presented for θ6-graph in [3].

Very recently, Bose et al. [2] considered a specific type
of WSPD spanners, and presented two near-optimal lo-
cal routing schemes for this type of spanners. In their
settings, the WSPD construction is based on fair split
trees, and the WSPD spanner is constructed by select-
ing a well-chosen edge from each partition of WSPD
(the rightmost point in each set) as its representative,
rather than picking an arbitrary edge. They showed
that their WSPD spanner has an improved spanning
ratio of 1+4/s+4/(s−2) compared to the original one,
which was 1 + 8/(s − 4), where s > 0 is the separation
factor. They presented a 2-local and a 1-local routing
algorithm with routing ratios of 1 + 4/s+ 6/(s− 2) and
1 + 6/(s− 2) + 6/s+ 4/(s2 − 2s) + 8/s2, respectively (a
routing algorithm on a graph G is called k-local, if each
vertex v of G stores information about vertices that are
at hop distance at most k from v). Their routing scheme
did not use a header but required routing tables of total

25

1st Iranian Conference on Computational Geometry

size O(s2nB) bits, where B is the maximum number of
bits to store a bounding box.

Competitive local routing algorithms with additional
memory have been recently considered for unit disk
graphs as popular wireless ad-hoc networks [15, 17]. The
unit disk graph connects any two nodes which are within
unit distance to each other. Yan et al. [17] presented a
routing algorithm with low hop (edge) delay, by assign-
ing a label of size O(log2 n) to each node, where n is
the number of nodes. Subsequently, Kaplan et al. [15]
discovered a (1 + ε)-competitive routing algorithm for
unit disk graphs, using a modifiable header (memory)
of size O(log n log ∆), where ∆ is the diameter of the
points, as well as additional polylog bits for each point.
Their method is based on the well-separated pair de-
composition for unit disk graphs [12].

Our Contribution. In this paper, we focus on an
important and well-known class of WSPD spanners
whose underlying WSPD is constructed using com-
pressed quadtree. This construction of WSPD is widely
used in the literature [8, 11, 14, 16], as it avoids the
complexity of fair split trees originally used by Callahan
and Kosaraju [7]. We present a competitive O(logα)-
memory routing algorithm to route on these WSPD
spanners, where α is the ratio of the farthest distance
to the closest distance in the input point set. We in-
deed consider a standard WSPD spanner which is con-
structed by choosing an arbitrary edge from each pair
of the WSPD, and unlike the method used in [2], we do
not pose any restriction on choosing the representatives
of the pairs when constructing the WSPD spanner. As-
suming that we can store a static information (routing
table) of size O(1

ε2 logα) at each node of the spanner,
the proposed algorithm is a (1 + ε)-competitive local
routing algorithm, which is optimal.

2 Preliminaries

In this section, we briefly describe the notions used
throughout the paper.

Well-Separated Pair Decomposition. Let P be a set
of n points in the plane, and s > 0 be a real number.
Two point sets A,B ⊆ P are well-separated with respect
to a separation factor s, if there are two disjoint disks
DA and DB with the same radius r, enclosing A and B
respectively, such that the distance between DA and DB

is at least s · r. Here, the distance of two subsets A and
B is defined as d(A,B) = min{‖a − b‖ | a ∈ A, b ∈ B}
where ‖a − b‖ denotes the Euclidean distance of the
points a and b (see Figure 1).

Following the definition in [7], a well-separated pair
decomposition (WSPD) for P with respect to s is a col-
lection W = {(A1, B1), . . . , (Am, Bm)} of pairs of non-

r

r

≥ s · r

DA

DB

Figure 1: A well-separated pair with separation s

empty subsets of P such that each pair (Ai, Bi) for
1 ≤ i ≤ m is a well-separated pair with respect to s,
and for any pair of points p, q ∈ P , there is a unique
pair (Ai, Bi) in the collection, such that either p ∈ Ai

and q ∈ Bi, or q ∈ Ai and p ∈ Bi. The number of
well-separated pairs, m, is called the size of the WSPD.

WSPD Construction. A quadtree of P is a tree data
structure T in which each internal node has four chil-
dren, and the points of P are stored in the leaves. The
root of T corresponds to a square bounding box of P ,
and each internal node v ∈ T corresponds to a cell c(v)
which is a square formed by splitting the parent cell
into four equal-size squares by a horizontal and a verti-
cal cut. A compressed quadtree is a quadtree in which
any sequence of nodes with degree one are replaced by a
single node. A compressed quadtree of a set of n points
can be constructed in O(n log n) time [13].

Given a compressed quadtree T of P , one can use
the following greedy algorithm to build a WSPD of P .
The algorithm starts by considering any combination of
two children of the root as a pair. If the current pair
is not well separated, then the bigger node of the pair
is replaced by its children, and the process continues
until we reach a well-separated pair decomposition. For
a separation factor s > 0, this algorithm yields a WSPD
of size O(s2n) in O(n log n+ s2n) time [13].

WSPD Spanners. Callahan and Kosaraju [6] showed
how a (1 + ε)-spanner can be obtained from a WSPD.
They first constructed a WSPD of P with separation
factor s = 4 + 8/ε. They then chose an arbitrary point
ai ∈ Ai and an arbitrary point bi ∈ Bi as the repre-
sentatives of Ai and Bi, respectively, and showed that
the resulting graph G = (P,E) with E = {(ai, bi) | 1 ≤
i ≤ m} is a (1 + ε)-spanner. We refer to the result-
ing graph G as a WSPD spanner of P throughout the
paper. Based on the construction described above, the
WSPD spanner has size O(n/ε2) and can be computed
in O(n log n+ n/ε2) time.

26

ICCG 2018, Tehran, February 27, 2018

3 Routing in WSPD Spanners

Let P be a set of n points in the plane, and let α be
the spread of P , namely the ratio of the farthest dis-
tance to the closest distance in P . In this section, we
propose an algorithm to route a message through the
WSPD spanner of P , utilizing a small additional mem-
ory (stack) along with the message, and a static data
(routing tables) in the nodes of the graph.

We first prove an upper bound on the number of
WSPD pairs that contain a fixed point. The following
packing lemma is an ingredient of our proof.

Lemma 1 (Packing Lemma [7]) Let D be a disk of
radius r in the plane. The number of disjoint quadtree
cells of side length at least ` overlapping D is at most
(1 + d2r/`e)2 = O(max {2, r/`}2).

Lemma 2 For each point p ∈ P , the number of WSPD
pairs containing p is upper-bounded by O(1

ε2 logα).

Proof. Let W be a WSPD of P with separation s as
described in Section 2. Let (A,B) be a well-separated
pair in W containing p, and let x and y be the small-
est quadtree cells of same length `, enclosing A and B,
respectively. Suppose that x and y are in level i of
the quadtree. By the construction of WSPD, we know
that if (A,B) ∈ W, then (P (A), P (B)) is not in W,
where P (A) and P (B) denote the parents of A and B
in quadtree, respectively. Then, d(A,B) ≤ (s + 2)

√
2`,

because otherwise, the distance between parent cells of
c(x) and c(y) with side length at least 2` is more than
s
√

2`, and hence they are well-separated, which is a con-
tradiction (see Figure 2). Therefore, by packing lemma,

at most O(((s+ 2)
√

2)
2
) = O(s2) pairs in level i can

contain p. Since s = 4 + 8/ε, and there are at most
logα levels in the quadtree, the total number of pairs
containing p is O(1

ε2 logα). �

c(x)
A

B

p`

c(y)

≤ (s+ 2)
√
2`

Figure 2: A well-separated pair with bounded distance.

Routing Algorithm. We are now ready to describe our
routing algorithm. Let fp(q) denote a function that
searches for a pair (Ai, Bi) in the WSPD such that
(p, q) ∈ Ai × Bi or (p, q) ∈ Bi × Ai, and returns their
corresponding representatives (ai, bi) or (bi, ai) in the
WSPD spanner. This function must be computable at
node p. Therefore, at each node p, we store a list (table)
of pairs (Ai, Bi) such that p is a member of either Ai or
Bi, and for each such pair (Ai, Bi), we store in the table
the boundaries of Ai and Bi (to check membership of an
arbitrary point in the set), as well as the representatives
of Ai and Bi in the WSPD spanner. Note that Lemma
2 bounds the size of the table stored at each node to
O(1

ε2 logα). The function is now simply computable at
p by trying all pairs including p and checking member-
ship of q in the other side of the pair, using boundaries
of the squares corresponding to the sets.

Routing can be performed by simulating the following
recursive algorithm, using a stack stored and transmit-
ted along with the message. The inputs are source and
destination points, (p, q), and we are at p at the begin-
ning of the algorithm (see Figure 3).

Algorithm 1 Route (p, q)

(a, b)← fp(q)
Route(p, a)
traverse along edge (a, b)
Route(b, q)

p

Ai

ai

(ai, bi)

δ(p, ai)

Bi

q

bi

δ(bi, q)

Figure 3: Routing a message from p to q.

Lemma 3 For any pair of points p, q ∈ P , the path
traversed by Algorithm 1 from p to q is at most 1 + ε
times the Euclidean distance between p and q.

Proof. We prove by induction on the Euclidean dis-
tance of the points. Fix a pair p, q ∈ P . Suppose by
induction that for any pair x, y ∈ P with d(x, y) ≤
d(p, q), the traversed path δ(x, y) has length at most
(1 + ε)d(x, y), where d(x, y) denotes the Euclidean dis-
tance between x and y. By construction of the WSPD
spanner, there is a pair (Ai, Bi) such that p ∈ Ai and
q ∈ Bi. Therefore, we have:

27

1st Iranian Conference on Computational Geometry

δ(p, q) ≤ δ(p, ai) + d(ai, bi) + δ(bi, q)

≤ (1 + ε)d(p, ai) + [d(p, q) + 4r] + (1 + ε)d(bi, q)

≤ (1 + ε)4r + [d(p, q) + 4r]

≤ d(p, q) + (1/s)(8 + 4ε)

≤ (1 + ε)d(p, q)

�

Lemma 4 The maximum depth of recursion in Algo-
rithm 1, and thus the maximum size of the stack sent
along with the message, is O(logα).

Proof. This is easy to see by noting that elements
stored in the stack, corresponding to the recursion his-
tory for the current call, are monotonically deepening
in the quadtree. �

Putting all these together, we get our main theorem.

Theorem 5 Let P be a set of n points in the plane
with spread α, and let S be a WSPD spanner of P with
spanning ratio 1 + ε. We can locally route a message
between any two nodes of S using a memory of size
O(logα) stored with the message, and a routing table
of size O(1

ε2 logα) stored at each node, such that the
path traversed between the two nodes has length at most
1 + ε times their Euclidean distance.

4 Conclusion

In this paper, we considered the WSPD spanners based
on compressed quadtrees, and proposed an efficient lo-
cal routing algorithm on these spanners, using a memory
of size O(logα) stored with the message, and a routing
table of size O(1

ε2 logα) stored in the nodes of the span-
ner, where α is the spread of the underlying points. The
path traveled between any two points by the algorithm
is guaranteed to be no longer than 1 + ε times the Eu-
clidean distance between the two points. Although we
presented our routing algorithm in the plane, the algo-
rithm can be easily extended to any fixed dimension d,
at the expense of increasing the routing table size to
O(1

εd
logα). It is interesting to see if the size of routing

table and/or memory can be improved.

References

[1] N. Bonichon, P. Bose, J. D. Carufel, L. Perković,
and A. V. Renssen. Upper and lower bounds for
competitive online routing on Delaunay triangulations.
arXiv:1501.01783, 2015.

[2] P. Bose, J.-L. De Carufel, V. Dujmović, and F. Paradis.
Local routing in spanners based on WSPDs. In Proc.
15th Workshop Algorithms Data Struct., pages 205–216,
2017.

[3] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. Competitive routing in the half-θ6-graphs. In
Proc. 23rd ACM-SIAM Sympos. Discrete Algorithms,
pages 1319–1328, 2012.

[4] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. Competitive local routing with constraints. In
Proc. 26th Annu. Internat. Sympos. Algorithms Com-
put., pages 23–34, 2015.

[5] P. Bose, A. van Renssen, and S. Verdonschot. On the
spanning ratio of Theta-graphs. In Proc. 13th Workshop
Algorithms Data Struct., pages 182–194, 2013.

[6] P. B. Callahan and S. R. Kosaraju. Faster algorithms
for some geometric graph problems in higher dimen-
sions. In Proc. 4th ACM-SIAM Sympos. Discrete Algo-
rithms, pages 291–300, 1993.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. J. ACM,
42(1):67–90, 1995.

[8] T. M. Chan. Well-separated pair decomposition in lin-
ear time? Inform. Process. Lett., 107(5):138–141, 2008.

[9] L. P. Chew. There is a planar graph almost as good as
the complete graph. In Proc. 2nd Annu. ACM Sympos.
Comput. Geom., pages 169–177, 1986.

[10] E. W. Dijkstra. A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–271,
1959.

[11] J. Fischer and S. Har-Peled. Dynamic well-separated
pair decomposition made easy. In Proc. 17th Canad.
Conf. Computat. Geom., volume 5, pages 235–238,
2005.

[12] J. Gao and L. Zhang. Well-separated pair decomposi-
tion for the unit-disk graph metric and its applications.
SIAM J. Comput., 35(1):151–169, 2005.

[13] S. Har-Peled. Geometric approximation algorithms.
American Mathematical Society, 2011.

[14] S. Har-Peled and M. Mendel. Fast construction of
nets in low-dimensional metrics and their applications.
SIAM J. Comput., 35(5):1148–1184, 2006.

[15] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth.
Routing in unit disk graphs. In Proc. 12th Latin Amer-
ican Symp. Theoret. Informatics, pages 536–548, 2016.

[16] E. Park and D. M. Mount. Output-sensitive well-
separated pair decompositions for dynamic point sets.
In Proc. 21st ACM SIGSPATIAL Internat. Conf. Adv.
Geographic Info. Syst., pages 354–363, 2013.

[17] C. Yan, Y. Xiang, and F. F. Dragan. Compact and
low delay routing labeling scheme for unit disk graphs.
Comput. Geom., 45(7):305–325, 2012.

28

ICCG 2018, Tehran, February 27, 2018

Progressive Algorithm For Euclidean Minimum Spanning Tree

Amir Mesrikhani ∗ Mohammad Farshi ∗ Mansoor Davoodi †

Abstract

Designing efficient algorithms that process massive data
is a challenging task. The progressive algorithms are
methods to handle massive data efficiently. In these al-
gorithms, partial solutions are reported to user in some
middle steps that approximates the final solution. The
user can decide whether to continue the running of the
algorithm based on the error of the partial solutions. In
this paper, we propose a progressive algorithm for com-
puting Euclidean minimum spanning tree of a set of n
points in the plane that consists of O(log n) steps. The
error of the partial solution in step r is O(1− 4r

n−1α
−1),

where α is the aspect ratio of the point set.

1 Introduction

One method to process massive data efficiently is de-
signing algorithms that solve a problem with a massive
input data interactively with users. Progressive algo-
rithms are one of these interactive methods. In these
algorithms, partial solutions, whose error are measured
by an error function (err), are reported to user in par-
ticular steps. The error function err takes a partial
solution as an argument and returns non-negative value
that represents the error value of the argument. Based
on the error value of the partial solution in each step,
the user can decide to stop the algorithm or continue
toward a partial solution with smaller error value. The
convergence speed of the partial solutions to the final
solution is determined by a convergence function fconv.
The function fconv takes step number r as an argument
and returns an upper bound of the error value of the
partial solution in step r.

Formally, in 2015, Alewijnse et al. [1] introduced the
following defintion for progressive algorithms:

Definition 1 A progressive algorithm is an algorithm
that produces partial solution sr in step r such that:

err(sr) ≤ fconv(r).

∗Combinatorial and Geometric Algorithms Lab., De-
partment of Mathematical Sciences, Yazd University, Yazd,
Iran, mesrikhani@stu.yazd.ac.ir, mfarshi@yazd.ac.ir

(corresponding author)
†Department of Computer Science and Information Technol-

ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran, mdmonfared@iasbs.ac.ir

Computing Euclidean Minimum Spanning Tree
(EMST) of a set of points is a classical problem that
has many applications in designing low-cost road net-
work and designing VLSI circuit. In this paper, we aim
to design a progressive algorithm to compute EMST of
a set of points in the plane.

1.1 Our results

For a set of n points in the plane, we propose a pro-
gressive algorithm for computing EMST with O(log4 n)
steps and the most time-consuming step takes O(n2)
time. In step r, our algorithm produces a partial solu-
tion whose error is O(1− 4r

n−1α
−1). The value α denotes

the apsect ratio of input point set which is the ratio of
the maximum pairwise distance and the minimum pair-
wise distance of the input points.

1.2 Related work

The framework of the progressive algorithm was intro-
duced by Alewijnse et al. in 2015 [1]. They stud-
ied some fundamental problems in computational ge-
ometry like finding convex hull of a set of points and
computing k-popular regions for a set of trajectories.
Also, progressive algorithms are studied in other con-
texts and the results could be found in [9, 10]. As
aforementioned, a progressive algorithm produces ap-
proximation solution in each step . Several approxi-
mation algorithms have been proposed for computing
Minimum Spanning Tree (MST) [8]. Clarkson et al. [6]
studied finding EMST of a set of points in Rd. They
proposed (1 + ε)-approximation algorithm that takes
O(n(log n + (1/ε) logα)) time for d = 3. Czmuaj et
al. [7] focused on approximating the weight of EMST
in sublinear time. Their algorithm approximates the
weight in Rd in O(

√
npoly(1/ε)) time with high proba-

bility, where poly denotes a polynomial function based
on 1/ε. For a given connected graph of an average
degree d, Chazelle et.al [5] presented probabilistic al-
gorithm in O(dωε−2 log dω

ε) time to approximate the
weight of MST with error at most ε, where ω is the
maximum weight of edges of the input graph. In Haus-
dorff metric, Alvarez et al. [2] proposed an algorithm
in O(τ1/εd log(1/εd)) time to approximate the weight
of MST with error at most ε, where τ denotes the time
needed to compute MST of points in a fixed metric Lp.
Some randomized algorithms for approximating MST

29

1st Iranian Conference on Computational Geometry

v1

v2

v3 v4

v5

S1

S2

S3

S4

S5

Tr

Figure 1: The red points are corresponding points of
the super vertices. Tr is the partial solution in step r of
the algorithm.

could be found in [4, 8]. Also, some results for approx-
imating MST in the modern parallel models such as
MapReduce could be found in [3].

2 Progressive algorithm for computing EMST

In this section, we aim to propose a progressive algo-
rithm for computing EMST of a set P of n points in
the plane. Before describing the algorithm, the par-
tial solution and error function should be defined. Let
S = {S1, ...Sk} be a partition of set P into the subsets
Si 6= ∅ such that Si ∩ Sj = ∅ for any 1 ≤ i 6= j ≤ k.
For each set Si ∈ S, we assign a super vertex vi. The
super vertex vi contains an arbitary point pi ∈ Si. Let
Er be a set of edges of a complete graph induced by
V = {v1, . . . , vk}. The weight of any edges (vi, vj) ∈ Er

is defined by the Euclidean distance between pi and pj .
Consider the graph Gr = (V,Er), the tree Tr in step r
of the algorithm is an EMST of Gr and the weight of
Tr denotes the partial solution (see Figure 1).

Let wr be the weight of partial solution Tr in step r
and wopt be the weight of the exact EMST of P . The
error function of our progressive algorithm is defined as
follows:

err(Tr) = 1− wr

wopt
. (1)

The Eq. (1) is a decreasing function. To prove this, we
use the following lemma.

Lemma 1 Let wr be the weight of a partial solution Tr
and wopt be the weight of the exact EMST (Texact) of
P . We have wr ≤ wopt.

Proof. Let V = {v1, . . . , vk} and E = {e1, . . . , ek−1}
be the set of vertices and edges of Tr respectively. Con-
sider an edge ei = (vt, vl), and the corresponding sets St

and Sl. We will show that pt and pl connect by a path in
Texact whose weight is greater or equal to ei. Two cases

pt

pl
emin

ei

H1

H2

Figure 2: Illustration the first case of the proof of
Lemma 1.

may be occured. First, the points of St and Sl connect
by an edge emin in Texact which is the minimum length
edge between the points in St and Sl. Let H1 and H2

be two paths that connect endpoints of emin to pt and
pl. By triangle inequality, the weight of ei is less than
or equal to the weight of the path H1

⋃
H2

⋃
emin (see

Figure 2).
Second, there is a path H that connecting St and Sl

through at least one subset Sk. In this case, by triangle
inequality the weight of H is greater than ei (see Figure
3). So we have wr < wopt. �

The idea of our progressive algorithm is the follow-
ing: in any step r, we divide the points into 4r disjoint
sets and pick an arbitrary point from each set. Finally,
EMST on the selected points is reported to the user as
the partial solution. To divide the points into disjoint
sets, we use kd−tree approach to partition the plane by
finding median vertical and horizontal lines with respect
to the x and y coordinates.

So, in the first step of our progressive algorithm, we
do as follows. Start by finding median points accord-
ing to the x and y coordinates. Then draw vertical and
horizontal lines passing through median points. These
lines divide P into four subsets S1 = {S1, S2, S3, S4}.
For each Si ∈ S1 i = 1, . . . , 4 , assign a super ver-
tex vi that stores one point from Si randomly. Con-
struct complete graph induce by vertices v1, v2, v3, v4
and with edge weight correspond to the Euclidean dis-
tance between associate points of super vertices. Com-
pute EMST of this graph (T1) and report the weight of
T1 as the first partial solution.

In generic step r, we do as follows:

1. For each subset Si ∈ Sr−1 do the following steps:

(a) Divide Si into four subsets with resepct to me-
dian lines according to x and y coordinates.
Add these subsets to Sr.

(b) Assign a super vertex for each new created
subset and store a random point from corre-
sponding subsets in it.

30

ICCG 2018, Tehran, February 27, 2018

pt

pl

H
Sk

ei

Figure 3: Illustration the second case of the proof of
Lemma 1.

2. Let Enew be a set of edges that created by connect-
ing each new vertex v to all vertices of Tr−1.

3. For each new super vertex v and corresponding
edges Enew, Tr=Update-EMST (Tr−1,v,Enew).

4. Report the weight of Tr to the user.

To describe how we can update Tr−1 to obtain Tr
in step 3, the following subproblem could be defined.
Let T be an EMST of a graph G that has already been
computed and v be a new vertex. Add v to T and
connect it to all vertices of T and call the new graph
by T ′ . The problem is designing an efficient algorithm
to compute an EMST of T ′. To this end, we use the
following lemma..

Lemma 2 Let e be an edge that has minimum weight
among all new edges incident to a new vertex v. Then
EMST of T ′ must contain e.

Proof. Let T ′m denotes the EMST of T ′. Assume to
the contrary that T ′m does not contain e. So T ′m must
contain an edge e′ with the weight greater than e. By
adding e to T ′m, a cycle that contains both e and e′ will
be obtained. By deleting e′ from T ′m, we get a spanning
tree where its weight is less than T ′m. This contradicts
to our assumption that T ′m is an EMST. �

The algorithm uses the above lemma as the main
strategy. Among all new edges, the algorithm finds the
edge with minimum weight and adds it to T . According
to above lemma, this edge belongs to EMST of T ′. By
this addition, T ′ will be a spanning tree but not neces-
sarily with the minimum weight. Now, each new edge
is added one by one to T . Suppose (vi, vj) is added to
T and w((vi, vj)) denotes its weight. This graph is a
spanning tree, so there is a unique path between vi and
vj . In this path, the algorithm finds an edge emax with
maximum weight. If w(emax) > w((vi, vj)) then emax

is deleted from T and we obtain a spanning tree with
smaller weight. Otherwise, (vi, vj) is deleted from T ′

and the current spanning tree is preserved. This pro-
cess is executed for all new edges. Finally, EMST of
T ′ is computed. To obtain the unique path between
vi and vj and update T , we can traverse T similar to
depth-first traversal of a tree. The Algorithm Update-
EMST is what we need to do in step 3 of our progressive
algorithm.

Algorithm 1: Update-EMST (T ,v,E)

Output: EMST of T
1 Find an edge (v, vi) with minimum edges among E;
2 Add (v, vi) to T ;
3 emax = (v, vi);
4 DFS(vi, emax, T, E);
5 return T ;

To implement the depth-first traversal of T , we use
an array Tmax[1, . . . , n] such that Tmax[i] denotes the
edge with the maximum weight among the edges in the
unique path between v and vi. The vertex v is the first
argument that DFS(.) is invoked by it.

Algorithm 2: DFS(v, emax, T, E)

1 Mark v as a visited vertex;
2 for each vertex vi adjecent to v do
3 if vi is not marked as visited vetex then
4 if w(v, vi) > w(emax) then
5 Tmax[i] = (v, vi);

6 else
7 Tmax[i] = emax;

8 if a new edge ei exists in E then
9 if w(ei) < Tmax[i] then

10 Add ei to T ;
11 Delete Tmax[i] from T ;
12 Tmax[i] = ei;

13 Call DFS(vi, Tmax[i], T, E);

In the following lemma, we analyze the convergence
function of our progressive algorithm.

Lemma 3 Let Tr be a partial solution in step r. Then
err(Tr) ∈ O(1 − 4r

n−1α
−1), where α is the aspect ratio

of the input points.

Proof. It is clear that, in step r of the algorithm, 4r

super vertices are created. So the partial solution Tr
must contain 4r − 1 edges. Consider the error function
defined in Eq. (1). Let C and D be the minimum
pairwise and the maximum pairwise distance of points
in the input point set P respectively. Trivially, wr ≥

31

1st Iranian Conference on Computational Geometry

(4r− 1)C and wopt ≤ D(n− 1). So, the upper bound of
the error value of Tr is:

err(Tr) ≤ 1− (4r − 1)C

D(n− 1)
≤ 1− 4r

n− 1
α−1.

�

Remark 1: Our progressive algorithm generates
the monotone partial soltuions. It means that, if Tr
and Tr+1 be two partial solutions in two consecutive
steps r and r + 1, then wr ≤ wr+1. Also,

fconv(r) ≤ fconv(r + 1).

This property obtain directly from Lemma 1 and
Lemma 3.

Remark 2: The idea of our progressive algorithm is
approximating the weight of EMST by choosing a subset
of P . This idea is similar to a framework called Coresets
introduced by Agarwal et al. [10]. One possible method
is using this approach to pick a small subset of P in each
step but Alvarez et al. [2] showed that this framework
does not work when we want to approximate the weight
of EMST.

Theorem 4 There exists a progressive algorithm for
computing EMST of a set of n points in the plane with
O(log4 n) steps. The algorithm takes O(n2) time in the
most time-consuming step and the convergence function
of the algorithm is O(1− 4r

n−1α
−1) according to the error

function defined in Eq. (1).

Proof. The convergence function is obtained from
Lemma 3. Let Sr = {S1, . . . , Sk} be the decomposi-
tion of P in step r, where k = 4r and |Si| denotes the
cardinality of Si. By our approach for decomposition,
each Si ∈ Sr, is divided to four equal size subsets. So
in step r, |Si| ≤ n

4r . Therefore the number of steps is
O(log n).

The lines 1 and 2 in step r of the progressive algorithm

takes
k∑

i=1

|Si| = O(n) time, since Si ∩ Sj = ∅ holds for

all 1 ≤ i 6= j ≤ k.
For line 3, we know that Tr−1 has 4r−1 − 1 edges.

By adding a new vertex v to Tr−1, we have 4r−1 new
edges. So, finding minimum edge takes O(4r−1) time.
To update Tr−1 when v is added, we need to depth-first
traversal of Tr−1 that takes O(4r−1) time. Therefore,
updating Tr−1 for each new added vertex takes O(4r−1)
time in total. We have (4r − 4r−1) = 3 × 4r−1 new
vertices in step r. The total time of updating Tr−1 is:

3× 4r−1 ×O(4r−1) ∈ O(42r−2).

Since r = O(log4 n), so step r never takes more than
O(n2) time. �

3 Conclusion

In this paper, a progressive algorithm is proposed for
computing the Euclidean minimum spanning tree of a
set of n points in the plane with O(log4 n) steps and the
most time-consuming step takes O(n2) time. The upper
bound on the error value of the generated partial solu-
tion in step r is O(1 − 4r

n−1α
−1), where α is the aspect

ratio of points. One interesting future work is design-
ing a progressive algorithm with convergence function
that only depends on the size of input especially when
α is unbounded. Developing the progressive algorithm
for other problems with a massive input data are also
interesting.

References

[1] S. P. A. Alewijnse, T. M. Bagautdinov, M. de Berg,
Q. W. Bouts, A. P. ten Brink, K. Buchin, and M. A.
Westenberg. Progressive geometric algorithms. Journal
of Computational Geometry, 6(2):72–92, 2015.

[2] V. Alvarez and R. Seidel. Approximating the minimum
weight spanning tree of a set of points in the hausdorff
metric. Computational Geometry, 43(2):94–98, 2010.

[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev.
Parallel algorithms for geometric graph problems. In
Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 574–583. ACM, 2014.

[4] P. Berenbrink, B. Krayenhoff, and F. Mallmann-
Trenn. Estimating the number of connected compo-
nents in sublinear time. Information Processing Letters,
114(11):639–642, 2014.

[5] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approxi-
mating the minimum spanning tree weight in sublinear
time. SIAM Journal on computing, 34(6):1370–1379,
2005.

[6] K. L. Clarkson. Fast expected-time and approximation
algorithms for geometric minimum spanning trees. In
Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 342–348. ACM, 1984.

[7] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. New-
man, R. Rubinfeld, and C. Sohler. Approximating the
weight of the euclidean minimum spanning tree in sub-
linear time. SIAM Journal on Computing, 35(1):91–
109, 2005.

[8] A. Gupta and J. Könemann. Approximation algorithms
for network design: A survey. Surveys in Operations
Research and Management Science, 16(1):3–20, 2011.

[9] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Efficient and
progressive group steiner tree search. In Proceedings of
the 2016 International Conference on Management of
Data, pages 91–106. ACM, 2016.

[10] A. Mesrikhani and M. Farshi. Progressive sorting in
the external memory model. In 48th Annual Iranian
Mathematics Conference (AIMC48), August 2017.

32

ICCG 2018, Tehran, February 27, 2018

A New Construction of the Greedy Spanner in Linear Space

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

It is well known that the path-greedy spanner or greedy
spanner for short is a high quality spanner in theory
and practice. In this paper, we present a new construc-
tion of the greedy spanner in linear space. The our
construction does not need to use the well-separated
pair decomposition. The last construction of the greedy
spanner in linear space due to Alewijnse et al. (Algo-
rithmica, volume 73, issue 3, pp 589–606, 2015) uses
the well-separated pair decomposition.

1 Introduction

Let S be a set points in Rd and t > 1 is a real number.
A graph G with vertex set S is called geometric, if every
edge e = (p, q) in G is the straight line between p and
q and the weight of e is the Euclidean distance between
p and q, denoted by |pq|. We call a geometric graph
G with vertex set S a t-spanner of S, if for each pair
p, q ∈ S, there exists a path in G between p and q of
length at most t × |pq|. This path is called a t-path
between p and q. The minimum value of t > 1 that a
geometric graph G = (S,E) is a t-spanner of S is called
the dilation (or stretch factor) of G. Several studies have
already been conducted on t-spanners. To study of an
overview on the methods of constructing t-spanners for
a given point set and their applications, see the book by
Narasimhan and Smid [8].

One of the popular t-spanners is the path-greedy span-
ner or greedy spanner for short. To construct the greedy
spanner of S, we start with a graph with vertex set S
and empty edge set and consider all pairs of points in
S in nondecreasing order of their distances. For a pair
(p, q), it is tested whether there exists a t-path between
p and q in the graph computed so far. If there is no
such a t-path, the edge (p, q) is added to the graph (see
Algorithm 1 that was presented in [8]). Using Dijkstra
algorithm to find the shortest paths, a naive implemen-
tation of Algorithm 1 has the running time O(n3 log n)
and the space usage O(n2). For many years, computing
the greedy spanner for a given point set in efficient time
and space is a challenging problem. There are some

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran. d.bakhshesh@ub.ac.ir
†Combinatorial and Geometric Algorithms Lab., Depart-

ment of Computer Science, Yazd University, Yazd, Iran.
mfarshi@yazd.ac.ir

Algorithm 1: PathGreedy(S, t)

input: a set S of n points in Rd and a real number
t > 1.

output: t-spanner G(S,E).
1 Sort

(
n
2

)
pairs of points in non-decreasing order of

their distances (ties are broken arbitrarily), and
store them in list L;

2 E := ∅;
3 G := (S,E);
4 foreach pair (u, v) ∈ L (in sorted order) do
5 if ShortestPath(G, u, v) > t · |uv| then
6 E := E ∪ {(u, v)};
7 end

8 end
9 return G(S,E);

researches on efficiently computing the greedy spanner
[1, 2, 6]. In [6], Bose et al. presented an O(n2 log n) time
algorithm for computing the greedy spanner for metric
spaces of bounded doubling dimension and therefore for
Euclidean spaces. Their algorithm uses O(n2) space. It
is notable that Farshi et al. [7] presented an algorithm,
denoted by FG-Greedy, to compute the greedy spanner
for a given point set in the plane that works well in prac-
tice and its running time tends to be near-quadratic,
in practice. However, Bose et al. found a counterex-
ample shows that the running time of FG-Greedy is
Θ(n3 log n) [6].

In [1], Alewijnse et al. presented an algorithm that
computes the greedy spanner in O(n2 log2 n) using a
linear space. They used the well-separated pair decom-
position (WSPD) which is a well-known and a powerful
data structure to solve the proximity problems, see [3, 4]
for more details on the WSPD. In this paper, we present
an algorithm similar to the algorithm in [1] that com-
putes the greedy spanner in linear space without the
need to the WSPD. Notably, implementing the WSPD
for a given point set is not easy, see [8] to find an al-
gorithm of computing the WSPD. It seems that the al-
gorithm presented in the current paper is simpler than
the way presented in [1] because it does not need to the
WSPD.

33

1st Iranian Conference on Computational Geometry

p

r

q

C

Q

Figure 1: Illustrating the proof of Lemma 2

2 Fundamental Lemmas

Here, we provide some fundamental lemmas that is
needed.

Lemma 1 ([5]) Let a, b and c be three points such that
|ac| ≤ |ab| and ∠bac ≤ α < π. Then |bc| ≤ |ab| − (1 −
2 sin(α/2))|ac|.

Let θ > 0 be a real number. Suppose that we partition
the plain into k = b 2πθ c cones with apex in origin. We
denote the set of resulting cones by Ck. Suppose that
S is a point set in the plain. For each p ∈ S and cone
C ∈ Ck, we define Cp as Cp := C + p (transformation of
cone C to apex p).

Lemma 2 Let t > 1 be a real number and let θ be a real
number with 0 < θ < π/3 such that 1−2 sin(θ/2) ≥ 1/t.
Let k = b 2πθ c and let S be a set of points in the plane.
For each p ∈ S and C ∈ Ck, the greedy spanner on S
contains at most one edge {p, q} with q ∈ Cp.

Proof. By contradiction, for some point p ∈ S and
some cone C ∈ Ck, suppose that the greedy spanner
contains at least two edges {p, r} and {p, q} with r, q ∈
Cp (see Figure 1). Suppose without loss of generality
that |pr| ≤ |pq|. By Lemma 1, we have |rq| ≤ |pq| −
(1 − 2 sin(θ/2))|pr| < |pq|. So the greedy algorithm
considers the pair {r, q} before the pair {p, q}. Hence,
there is a t-path between r and q that is denoted by Q.
Now, consider the path L := {p, r} ∪ Q between p and
q. So we have

|L| = |pr|+ |Q|
≤ |pr|+ t|rq|
≤ |pr|+ t(|pq| − (1− 2 sin(θ/2))|pr|)
= t|pq| − (t(1− 2 sin(θ/2))− 1)|pr| ≤ t|pq|.

So, the path L is a t-path between p and q. Hence, the
greedy spanner does not add the edge {p, q} which is a
contradiction. This completes the proof. �

A straightforward conclusion of Lemma 2 is the follow-
ing corollary.

Corollary 1 Let t > 1 be a real number and let θ be a
real number with 0 < θ < π/3 such that 1−2 sin(θ/2) ≥
1/t. The greedy t-spanner for a set of n points in the
plane contains at most O(1

θn) edges.

Let G = (S,E) be a geometric graph. For a cone C ∈ Ck
and a point p ∈ S, let x ∈ Cp be a point with the
following properties:

1. there is no t-path between x and p,

2. for all points y ∈ Cp with |yp| < |xp|, there is a
t-path between y and p.

We denote x by Nearest(p, Cp). If there is no such x,
we suppose that x = nil.

Lemma 3 Let G = (S,E) be a geometric graph. For
each cone C ∈ Ck and for each point p ∈ S, we can
compute Nearest(p, Cp) in O(|S| log |S|+ |E|) time and
O(|S|) space.

Proof. We can use the Dijkstra algorithm to find the
closest point to p in Cp ∩ S such that its dilation with
respect to p is larger than t. This takes O(|S| log |S| +
|E|) time and O(|S|) space. Note that to check whether
a point is in Cp∩S during the Dijkstra computation, we
can preprocess an array A of size |S| such that if a point
r is in Cp∩S then A[r] marked as true, otherwise marked
as false. This takes O(|S|) time and O(|S|) space. It is
noteworthy that we can reuse the space used for a cone
for the next cone, too. �

3 First Algorithm

In this section, we present an algorithm to construct the
greedy spanner in linear space. See Algorithm New-
GreedyLinearSpace (Algorithm 3). The algorithm
is similar to the algorithm due to Alewijnse et al. [1]
just we do not use the data structure WSPD and instead
we use the cones Ck.

Now, we describe the algorithm NewGreedyLin-
earSpace in detail. Suppose that t > 1 and θ > 0
with 0 < θ < π/3 such that 1 − 2 sin(θ/2) ≥ 1/t. At
first, the algorithm partitions the plain into k cones for
k = b 2πθ c. Denote the set of resulting cones by Ck. The
algorithm uses a procedure denoted by FillQueue that
takes the priority queue Q and for each C ∈ Ck and
p ∈ S adds the pairs {p, x} to Q with priority |px|,
where x = Nearest(p, Cp).

At first, the algorithm calls the procedure Fil-
lQueue. If Q is empty after a call of FillQueue, the
algorithm terminates and returns E, otherwise it ex-
tracts the minimum from Q and adds the corresponding
pair to the edges set E, see lines 5 and 6 of Algorithm 3.
Then, the algorithm updates the priority queue Q.

34

ICCG 2018, Tehran, February 27, 2018

Algorithm 2: FillQueue(Q)

1 foreach C ∈ Ck do
2 foreach p ∈ S do
3 x := Nearest(p, Cp);
4 if x is not nil then
5 Add {p, x} to Q with key |px|, and

associate this entry with {p, Cp};
6 end

7 end

8 end

Algorithm 3: NewGreedyLinearSpace(S, t, θ)

1 Partition the plain into k cones for k = b 2πθ c.
Denote the set of resulting cones by Ck;

2 E := ∅;
3 Q := an empty priority queue;
4 FillQueue(Q);
5 while Q is not empty do
6 Extract the minimum from Q, let this be {u, v};
7 Add {u, v} to E;
8 foreach pair {p, Cp} with an entry in Q do
9 x := Nearest(p, Cp);

10 if x is nil then
11 Remove the entry in Q associated with

{p, Cp} from Q;

12 end
13 else
14 Update the entry in Q associated with

{p, Cp} to contain (p, x) and increase
its key to |px|;

15 end

16 end

17 end
18 return E;

Theorem 4 Algorithm NewGreedyLinearSpace
works correctly, its running time is O(n3 log2 n) and
uses O(kn) space.

Proof. Note that in the algorithm of constructing the
original greedy spanner (Algorithm 1), during the pro-
cess of a pair (p, q), if (p, q) is added to the edge set, then
that is surely the closest pair of points among all pairs
of points (x, y) such that there is no t-path between x
and y in the graph computed so far. Algorithm 3 does
exactly the same just the method used in this algorithm
is based on lemmas 2 and 3.

Let k be a fixed number. The running time of the
algorithm is computed as follows. Extracting from Q
can be done in O(log n). Since by Corollary 1 the greedy
spanner has O(n) edges, lines 5 and 6 take O(n log n)
time during total runtime. Now, by Lemma 3, loop

foreach takes O(n2 log n) time. Hence, overall running
time is O(n log n× n2 log n) = O(n3 log2 n).

The space complexity of the algorithm can be com-
puted as follows. All cones can be store in a linear space.
Now, since the queue Q can be implemented by a lin-
ear space and by Lemma 3, the space complexity of the
algorithm is O(kn). �

4 Second Algorithm

In this section, we give an improved version of the al-
gorithm NewGreedyLinearSpace. We call the im-
proved algorithm by ModifiedGreedyLinearSpace.
At first, we have the following observation.

Observation 1 ([1]) Let E be some edge set for S.
Let (a, b) ∈ E. Let c, d ∈ S be points such that
|ac|, |ad|, |bc|, |bd| > t|cd|. Then any t-path between c
and d will not use the edge (a, b).

Using Observation 1, we can improve the Line 8 in al-
gorithm NewGreedyLinearSpace. In particular, we
states that we do not need to update all entities in Q,
but update some of them.

For each cone C ∈ Ck and for each p ∈ S, we consider
the farthest neighbor of p denoted by fp,C such that
fp,C ∈ Cp. Furthermore, for each C ∈ Ck, let h1,C
and h2,C be the boundaries of the cone C. For a point
u ∈ S, the minimum distance between u and the ray
hi,c denoted by |uhi,C |. Using the cone Cp, we define
the cones C−p , C

up
p and Cdownp as is shown in Figure 2.

p

CpC−
p

Cup
p

Cdown
p

h1,Cp

h2,Cp

Figure 2: Cones Cp, C
−
p , C

up
p and Cdownp

Now, we present the idea of the algorithm Modi-
fiedGreedyLinearSpace (Algorithm 4). The idea is
based on what follows. Suppose that at a moment of ex-
ecution of the algorithm, the pair (u, v) is added to the
edge set E. Let C be the cone in Ck such that v ∈ Cu.
Let p be an arbitrary point in S. Now, if |pu| > t|pfp,C |,
then since fp,C is the farthest point with respect to p
in Cp, for each q ∈ Cp, we have |pu| > t|pq|. Hence, by
Observation 1, any t-path between p and q will not use
the edge (u, v). Depending on the positions of u and v,
there are some cases that we are presented in Line 11.

35

1st Iranian Conference on Computational Geometry

Algorithm 4:ModifiedGreedyLinearSpace(S, t, θ)

1 Partition the plain into k cones for k = b 2πθ c.
Denote the set of resulting cones by Ck;

2 foreach C ∈ Ck and p ∈ S do
3 Find the farthest neighbor of p in Cp denoted

by fp,C with fp,C ∈ Cp.
4 end
5 E := ∅;
6 Q := an empty priority queue;
7 FillQueue(Q);
8 while Q is not empty do
9 Extract the minimum from Q, let this be {u, v}

and also suppose that C is a cone in Ck such
that v ∈ Cu;

10 Add {u, v} to E;
11 foreach pair {p, Cp} with an entry in Q such

that |up| ≤ t× |pfp,C | or |vp| ≤ t× |pfp,C |
or
(
|uh1,Cp

| ≤ t× |pfp,C | or |vh1,Cp
| ≤

t× |pfp,C | when u, v ∈ Cupp
)
or

(
|uh2,Cp | ≤ t× |pfp,C | or |vh2,Cp | ≤
t× |pfp,C | when u, v ∈ Cdownp

)
or

(
|uh1,Cp

| ≤ t× |pfp,C | or |vh1,Cp
| ≤ t×

|pfp,C | or |uh2,Cp
| ≤ t×|pfp,C | or |vh2,Cp

| ≤
t× |pfp,C | when u, v ∈ C−p

)
/* There

still exists some other cases that we

are omitted them. The cases causes

according to the position of u and v
with respect to the cones

Cp, C
−
p , C

up
p , Cdownp (Number of all

cases is 16). */

12 do
13 x := Nearest(p, Cp);
14 if x is nil then
15 Remove the entry in Q associated with

{p, Cp} from Q;

16 end
17 else
18 Update the entry in Q associated with

{p, Cp} to contain (p, x) and increase
its key to |px|;

19 end

20 end

21 end
22 return E;

Thus, by adding the edge (u, v) to E, we do not need to
update the entry of Q corresponding to the pair {p, Cp}.
Hence, the algorithm ModifiedGreedyLinearSpace
dose not update all entries in Q. It just updates the

entries of Q which have the conditions in Line 11.

Theorem 5 Algorithm ModifiedGreedyLin-
earSpace works correctly and uses O(kn) space.

Proof. Proof is similar to the proof of Theorem 4. �

Note that the time complexity of Algorithm Modified-
GreedyLinearSpace is the same with the time com-
plexity of Algorithm NewGreedyLinearSpace. We
think that the time complexity of ModifiedGreedy-
LinearSpace can be improved because we have made
an improvement on this algorithm. However, we did not
find out how to improve this time.

5 Conclusion

In this paper, we considered the greedy spanner and
focused on its construction using a linear space. In
particular, we presented a new method to construct the
greedy spanner in linear space without implementing
the WSPD.

References

[1] S. P. A. Alewijnse, Q. W. Bouts, A. P. ten Brink, and
K. Buchin. Computing the greedy spanner in linear
space. Algorithmica, 73(3):589–606, Nov 2015.

[2] S. P. A. Alewijnse, Q. W. Bouts, A. P. ten Brink, and
K. Buchin. Distribution-sensitive construction of the
greedy spanner. Algorithmica, 78(1):209–231, May 2017.

[3] P. B. Callahan. Dealing with Higher Dimensions: The
Well-separated Pair Decomposition and Its Applications.
PhD thesis, Baltimore, MD, USA, 1995. UMI Order No.
GAX95-33229.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal
of the ACM (JACM), 42(1):67–90, 1995.

[5] L. Barba, P. Bose, M. Damian, R. Fagerberg, W. L.
Keng, J. O’Rourke, A. van Renssen, P. Taslakian, S. Ver-
donschot, and G. Xia. New and improved spanning ra-
tios for Yao graphs. Journal of Computational Geometry,
6(2):19–53, 2015.

[6] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and
M. Smid. Computing the greedy spanner in near-
quadratic time. Algorithmica, 58(3):711–729, 2010.

[7] M. Farshi and J. Gudmundsson. Experimental study of
geometric t-spanners. Journal of Experimental Algorith-
mics (JEA), 14:3, 2009.

[8] G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

36

ICCG 2018, Tehran, February 27, 2018

Approximate Hotspots of Orthogonal Trajectories

Ali Gholami Rudi∗

Abstract

In this paper we study the problem of finding hotspots
of polygonal two-dimensional trajectories, i.e. regions
in which a moving entity has spent a significant
amount of time. The fastest optimal algorithm, due to
Gudmundsson, van Kreveld, and Staals (2013), finds
an axis-parallel square hotspot of fixed side length in
O(n2). We present an approximation algorithm with
the time complexity O(n log n) and approximation
factor 1/4 for orthogonal trajectories, in which the
entity moves in a direction parallel either to the x or to
the y-axis.

Keywords: Trajectory, Hotspot, Geometric algorithms

1 Introduction

Tracking technologies like GPS gather huge and growing
collections of trajectory data, for instance for cars, mo-
bile devices, and animals. The analysis of these collec-
tions poses many interesting problems, which has been
the subject of much attention recently [1]. One of these
problems is the identification of the region, in which
an entity has spent a large amount of time. Such re-
gions are usually called stay points, popular places, or
hotspots in the literature.

We study polygonal trajectories, in which the tra-
jectory is obtained by linearly interpolating the loca-
tions of the moving entity, recorded at specific points
in time (this model, also called piecewise-linear trajec-
tories [2], is very common in the literature [3]). For
this model, Gudmundsson et al. define several problems
about trajectory hotspots and present an O(n2) algo-
rithm to solve the following [4]: defining a hotspot as
an axis-aligned square of fixed side length, we wish to
find the placement of such a square that maximizes the
time the entity spends inside it (there are other models
and assumptions about hotspots, for a brief survey of
which, the reader may consult [4]; e.g. the assumption
of pre-defined potential regions [5], counting only the
number of visits or the number of visits from different
entities [6], or based on the sampled locations only [7]).
To solve this problem, they first show that the function

∗Department of Electrical and Computer Engineering, Bobol
Noshirvani University of Technology, Babol, Iran. Email:
gholamirudi@nit.ac.ir.

that maps the location of the square to the duration
the trajectory spends inside it, is piecewise linear and
its breakpoints happen when a side of the square lies on
a vertex, or a corner of the square on an edge of the tra-
jectory. Based on this observation, they subdivide the
plane into O(n2) faces and test each face for the square
with the maximum duration.

Limiting ourselves to orthogonal trajectories, in
which each edge is parallel to an axis of the coordinate
system, we present an O(n log n) time approximation
algorithm. Compared to the time the entity spends in
the optimal placement of the square, the entity spends
no less than 1/4 of that time in the square returned
by our algorithm. It sweeps two parallel lines to find
the best square, after decomposing the trajectory. Un-
like Gudmundsson et al.’s algorithm, extending which
to three-dimensional trajectories seems nontrivial, an
extension of the algorithm presented in this paper can
find approximate, axis-parallel, cube hotspots of trajec-
tories in R3 with approximation factor 1/4 and the time
complexity O(n2 log n). This algorithm is explained in
the extended version of this paper1. The extended ver-
sion also describes a 1/2-approximation algorithm for
two-dimensional trajectories with the time complexity
O(n log3 n).

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our model in more detail and in-
troduce the notation used in this paper. We also prove
results that we use in Section 3, in which we present our
algorithm for finding approximate hotspots of orthogo-
nal trajectories. Finally, in Section 4 we conclude this
paper.

2 Preliminaries and Basic Results

A trajectory specifies the location of a moving entity
through time. Therefore, it can be described as a func-
tion that maps each point in a specific time interval to
a location in the plane. Similar to Gudmundsson et
al. [4], we assume that trajectories are continuous and
piecewise linear. The location of the entity is recorded
at discrete time intervals, which we call the vertices of
a trajectory. We assume that the entity moves in a
straight line and with constant speed from a vertex to
the next (this simplifying assumption is very common in
the literature but there are other models for the move-

1https://arxiv.org/abs/1710.05185

37

1st Iranian Conference on Computational Geometry

as ae

bs be

cs ce

ds de

es ee

fs fe

Figure 1: The entering rate of b and e and the leaving
rate of b and c are nonzero

ment of the entity between vertices [8]); we call the sub-
trajectory connecting two contiguous vertices, an edge
of the trajectory.

In this paper, we relax the requirement that a tra-
jectory is continuous. We assume that a trajectory T
is a set of edges {e1, e2, ..., en}. For an edge e, we as-
sociate a weight we, which denotes the duration of the
sub-trajectory through its end points (the difference be-
tween the time recorded for its end points). We also de-
note the left and the right vertex of an edge with es and
ee respectively. In orthogonal trajectories, all trajec-
tory edges are parallel either to the x or to the y-axis.
In horizontal (similarly vertical) trajectories all edges
are parallel to the x-axis (y-axis).

For any axis-parallel square r with some fixed side
length, we define the weight of r as the total duration
in which the entity has spent inside it and denote it
with wT (r), or if there is no confusion w(r). A hotspot
is an axis-parallel square with side length s and with
the maximum possible weight. We denote the weight of
a hotspot of trajectory T with hs(T).

Lemma 1 Let H and V be a partition of an orthog-
onal trajectory T , in which H contains the horizontal
edges and V contains the vertical edges of T . Let w be
the maximum of hs(H) and hs(V). Then, w is at least
hs(T)/2.

Proof. Let r be a hotspot in T . Every edge of T is
either in H or in V and thus wH(r) + wV (r) equals
hs(T). Therefore, either wH(r) ≥ hs(T)/2 or wV (r) ≥
hs(T)/2. Since hs(H) ≥ wH(r) and hs(V) ≥ wV (r), we
have max(hs(H), hs(V)) ≥ hs(T)/2 as required. �

Let r be an axis-parallel square and T be a horizontal
trajectory. The entering rate of an edge e of T with
respect to r is the rate at which the contribution of
the weight of the edge to the weight of r increases, if
the right side of r is moved to the right. Similarly, the
leaving rate of an edge e with respect to r is the rate at
which the contribution of the weight of the edge to the

weight of r decreases, if the left side of r is moved to the
right. We denote the former as r+(e) and the latter as
r−(e). It is not difficult to see that r+(e) (and similarly
r−(e)) is either zero or the ratio of its duration to its
length, which we denote as d(e). In Figure 1, except the
entering rate of b and e, and the leaving rate of b and c,
the entering and leaving rates of all edges are zero.

The entering rate of horizontal trajectory T with re-
spect to square r, denoted as r+(T), is defined as the
sum of the entering rate of all edges of T . Similarly,
the leaving rate of trajectory T with respect to square
r is the sum of the leaving rate of all edges of T ; this is
denoted as r−(T).

Lemma 2 Let T be a horizontal trajectory. There ex-
ists a square with side length s, whose weight equals
hs(T) and one of its vertical sides contains a vertex of
T .

Proof. Let r be a square with weight hs(T) and sup-
pose none of its vertical sides contains a vertex of T .
Clearly, r+(T) cannot be greater than r−(T); otherwise,
the weight of r increases by moving it to the right, which
is impossible since it is a hotspot. Similarly, r−(T) can-
not be greater than r+(T). Therefore, r+(T) = r−(T)
and by moving r to the right until one of its sides meets
a vertex of T , its weight does not change. �

Theorem 3 Let T be a horizontal trajectory and let h
be the maximum weight of a square with side length s,
one of whose corners coincides with one of the vertices
of T . Then, h ≥ hs(T)/2.

Proof. Let r be the square with weight hs(T), one
of whose vertical sides contains a vertex v of T (such
a square surely exists, as shown in Lemma 2). Sup-
pose v is on the left side of r (the argument for the
right side is similar). Let r′ and r′′ be the squares
with side length s, whose lower left and upper left cor-
ners are on v respectively. Given that the union of r′

and r′′ covers r, w(r′) + w(r′′) is at least hs(T) and
therefore max(w(r′), w(r′′)) is at least hs(T)/2. Since
h ≥ max(w(r′), w(r′′)), we have h ≥ hs(T)/2. �

3 A 1/4 Approximation Algorithm

In this section we present an approximation algorithm
that, given an orthogonal trajectory T , finds an axis-
aligned square, whose weight is at least hs(T)/4. We
start with Algorithm 3.1, which finds the square with
the maximum weight among those whose lower right or
upper right corners are on one of the vertices of the given
horizontal trajectory. The algorithm assumes that the
x coordinate of all vertices is at least 0; otherwise the
trajectory may be shifted in the positive direction of the
x-axis. Also, the algorithm uses the Fenwick tree data

38

ICCG 2018, Tehran, February 27, 2018

v

re rs

e3

e1

e4

e2

e5

Figure 2: Sweeping two parallel lines in Algorithm 3.1

structure, supporting the computation of the prefix-sum
of a sequence of n numbers and updating any of them
in O(log n) [9]. For a Fenwick tree f with n elements,
Add(f, i, c) increases the value of the i-th element by c,
Sum(f, i, j) returns the sum of the elements i through
j, and Get(f, i) returns the value of the i-th element.
The algorithm maintains three Fenwick trees, each with
size n: fixed for the fixed contributions of the edges to
the weight of containing squares and entering (similarly
leaving) for the entering (leaving) rate of the edges with
respect to containing squares (the algorithm moves two
parallel sweep lines and both vertical sides of the squares
considered in the algorithm are on these lines).

One of the key ideas in Algorithm 3.1 is to maintain
only the current entering and leaving rates of the edges
and assume that each entering or leaving interval has
begun from x = 0. Therefore, to compute the total con-
tribution of entering and leaving edges, the algorithm
simply multiplies the sum of their rate with the current
value of x. To compensate for the intervals included in
this computation before the actual entering or leaving
intervals, the algorithm updates the fixed Fenwick tree.
This frees the algorithm from storing a different start-
ing position for the entering and leaving rates of each
of the edges, which would make the computation of the
weight of square r more complex. The correctness of
this algorithm is shown in Theorem 4.

Theorem 4 Among all axis-parallel squares with side
length s and with a right corner on a vertex of a horizon-
tal trajectory T , Algorithm 3.1 finds a square with the
maximum weight and with time complexity O(n log n).

Proof. The algorithm maintains the entering and leav-
ing rates of all edges with respect to any square r that
contains them and its left and right sides are on rs and
re respectively: the entering rate of an edge ei is in-
creased by d(e) as its left vertex meets rs and it is
reset (decreased by d(e)) when it meets re (therefore,

Algorithm 3.1: RightCornerHotspots(T, s)

Input : A horizontal trajectory T and length s; n
is the number of the edges of T .

Output: An axis-parallel square with side length s
and with one of its right corners on a
vertex of T , with the maximum weight.

fixed , entering , leaving : n-element Fenwick trees,
with all elements zero initially.

Sort the edges of T increasingly by the value of
their y coordinate to obtain the sequence
e1, e2, ..., en (note that all edges are horizontal and
the height of some of the edges may be equal).

Move two parallel vertical sweep lines with distance
s horizontally to the right. We denote the
x-coordinate of the left sweep line with re and the
right sweep line with rs.
for each event, i.e. a vertex v of T meeting any of
these sweep lines (suppose v is an endpoint of ei)
do

if v is the left vertex of ei and is on x = rs
then

Add(entering , i, d(ei))
Add(fixed , i,−x · d(ei))

if v is the left vertex ei and is on x = re then
Add(entering , i,−d(ei))
Add(fixed , i, s · d(ei)− x · d(ei))

if v is the right vertex ei and is on x = rs then
Add(leaving , i, d(ei))
Add(fixed , i, x · d(ei))

if v is the right vertex ei and is on x = re then
Add(leaving , i,−d(ei))
Add(fixed , i,−s · d(ei)− x · d(ei))

Find the maximum value of j, such that j ≥ i
and the difference in the height of ei and ej is
no more than s (this can be done with a simple
binary search). The weight of the square
whose lower right corner is at v is ax+ c, in
which a is the sum of Sum(entering , i, j) and
Sum(leaving , i, j) and c is Sum(fixed , i, j).

Record this as the best square, if this weight is
the maximum so far.

Do likewise for the square whose upper right
corner is at v (for this case, the minimum
value of j should be found such that j ≤ i and
the difference between the height of ei and ej
is at most s).

return the square with the maximum weight.

39

1st Iranian Conference on Computational Geometry

Get(entering , i) is always r+(ei)). The leaving rate of
the edges is updated similarly. Let r be the square con-
sidered in the loop and e = ek, such that k is in the
interval from i through j. To show that the algorithm
finds the weight of r correctly, we show that the con-
tribution of edge e to the weight of r is contrib(e) =
(Get(entering , k)−Get(leaving , k)) · x+ Get(fixed , k).

There are five cases to consider regarding the relative
position of an edge and the two sweep lines. These cases
are demonstrated in Figure 2: an edge may be outside
(e5) or inside (e2) the region bounded by the two sweep
lines, or it may intersect the right sweep line (e3), the
left sweep line (e1), or both (e4).

It is not difficult to show that the contribution of
an edge ei to the weight of r is equal to contrib(e) in
all five cases. If e is outside the region bounded by
the two sweep lines, the entering and leaving rates and
Get(fixed , k) are all zero. When ei intersects only the
right sweep line (re), as e3 in Figure 2, contrib(e) =
x · d(e)− x(es) · d(e), in which x(p) is the value of the x
coordinate of point p. This clearly is equal to the con-
tribution of the edge e to the weight of any containing
square r whose vertical sides are on rs and re. We omit
other cases for brevity. �

The following theorem shows how we can use Algo-
rithm 3.1 and the theorems proved in the previous sec-
tion to obtain an approximation algorithm for finding
square hotspots of fixed side length for orthogonal tra-
jectories.

Theorem 5 There is an approximation algorithm for
finding hotspots (axis-parallel squares with side length
s) of orthogonal trajectories, such that the weight of the
square found by the algorithm is at least 1/4 of the op-
timal value (hs(T)).

Proof. Let T be an orthogonal trajectory. T can be
partitioned into sets V and H containing the vertical
and horizontal edges of T respectively. Then, Algorithm
3.1 finds a square rH with the maximum possible weight,
in which one of its corners is on a vertex ofH (Algorithm
3.1 can be performed twice, once after rotating the plane
180 degrees to find the maximum-weight squares with
one of its left corners on a vertex of H). The same algo-
rithm can obtain a square rV with the maximum possi-
ble weight for V , after rotating the plane 90 degrees. By
Theorem 3, w(rH) ≥ hs(H)/2 and w(rV) ≥ hs(V)/2.
Also, by Lemma 1, max(hs(H), hs(V)) ≥ hs(T)/2
implying that max(w(rH), w(rV)) ≥ hs(T)/4, as re-
quired. �

4 Discussion

The 1/4-approximation algorithm presented in this pa-
per can be extended to three dimensions to find cube

hotspots of fixed side length for orthogonal trajectories
in R3; this algorithm is presented in the extended ver-
sion of this paper. In the extended version, we also
describe a 1/2-approximation algorithm with the time
complexity O(n log3 n), which maintains a kinetic tour-
nament tree on a segment tree. It may be possible to im-
prove this to obtain an exact algorithm. One of our mo-
tivations for studying orthogonal trajectories was find-
ing efficient approximation algorithms for general tra-
jectories; this goal requires further studies.

References

[1] Y. Zheng. Trajectory data mining - an overview. ACM
Transactions on Intelligent Systems and Technology,
6(3):29:1–29:41, 2015.

[2] M. Buchin, A. Driemel, M. J. van Kreveld, and V. Sac-
ristán. Segmenting trajectories - a framework and algo-
rithms using spatiotemporal criteria. Journal of Spatial
Information Science, 3(1):33–63, 2011.

[3] B. Aronov, A. Driemel, M. J. van Kreveld, M. Löffler,
and F. Staals. Segmentation of trajectories on non-
monotone criteria. ACM Transactions on Algorithms,
12(2):26:1–26:28, 2016.

[4] J. Gudmundsson, M. J. van Kreveld, and F. Staals. Al-
gorithms for hotspot computation on trajectory data. In
SIGSPATIAL/GIS, pages 134–143, 2013.

[5] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F.
de Macêdo, B. Moelans, and A. A. Vaisman. A model
for enriching trajectories with semantic geographical in-
formation. In ACM International Symposium on Geo-
graphic Information Systems, page 22. ACM, 2007.

[6] M. Benkert, B. Djordjevic, J. Gudmundsson, and
T. Wolle. Finding popular places. International Journal
of Computational Geometry and Applications, 20(1):19–
42, 2010.

[7] S. Tiwari and S. Kaushik. Mining popular places in a
geo-spatial region based on gps data using semantic in-
formation. In Workshop on Databases in Networked In-
formation Systems, pages 262–276. Springer, 2013.

[8] H. J. Miller. Modelling accessibility using space-time
prism concepts within geographical information systems.
International Journal of Geographical Information Sci-
ence, 5(3):287–301, 1991.

[9] P. M. Fenwick. A new data structure for cumulative
probability tables - an improved frequency-to-symbol al-
gorithm. Software, Practice and Experience, 26(4):489–
490, 1996.

40

ICCG 2018, Tehran, February 27, 2018

Knowledge Representation for the Geometrical Shapes

Abolfazl Fatholahzadeha,b∗ Dariush Latific†

Abstract

This paper outlines the necessity of the knowledge
representation for the geometrical shapes(KRGS). We
advocate that KRGS for being powerful must contain
at least three major components, namely (1) fuzzy logic
scheme, (2) the machine learning technique, and (3) an
integrated algebraic and logical reasoning. After argu-
ing the need for using fuzzy expressions in spatial rea-
soning, then inducing the spatial graph generalized and
maximal common part of the expressions is discussed.
Finally, the integration of approximate references into
spatial reasoning using absolute measurements is out-
lined. The integration here means that the satisfiability
of a fuzzy spatial expression is conducted by both logical
and algebraic reasoning.

Keywords: Knowledge representation, integrated algebraic

and logical, fuzzy logic reasoning, machine learning.

1 Introduction

Referring in practical spatial description is seldom abso-
lute. Sometimes, due to the lack of precise information,
it is not possible to represent the x− y coordinate of the
vanishing points. In this case, symbolic knowledge can
be used as mean of expression to situate the position of
an absolute point with respect to a plane. For instance,
in image processing by using 3D projective space [6], one
can use the relation between a point P and an object O

via the 3D line PQ, where Q is an ideal point. Often abso-
lute measurements are unnecessary: if we want to know
whether an object will pass through a hole, it is suffi-
cient to know the relative size of the hole and object.
Another example is the problem of soil classification,
where the determination of some class is based on the
above relation with respect to a particular line and the
plasticity index.

The aim of this paper is to advocate in favor of three
mentioned above components. Using concrete exam-
ples, We provide the evidences why these components
are mandatory. The rest of the paper is organized as fol-

∗a: University of CentraleSupélec, France. b: Institute for
Research in Artificial Intelligence, University of Mohaghegh Ard-
abili, Iran, abolfazl.fatholahzadeh@centralesupelec.fr
†c: Department of Mathematics, University of Mohaghegh

Ardabili, Iran, latifi@uma.ac.ir

lows. Section 2 describes the representation of the fuzzy
references. Section 3 sketches learning spatial graph.
How the satisfiability process along with the integra-
tion of algebraic and logical reasoning, can be done, is
explained in Section 4. Section 5 gives conclusions and
future problems.

2 Fuzzy References

We shall call fuzzy expressions those expressions in-
cluding at least one approximate references like above,
below, over, and under [2].

Their intuitive meanings can be depicted by Figure 1.
To represent these predicates, we first describe how to
map F1 = {above, below} into algebraic reasoning. We
then use these knowledge of F1 with additional the pred-
icates describing point and line relations to express the
description of F2 = {over, under}.

For mapping F1 into algebraic reasoning, let us sup-
pose that a fuzzy subset be characterized by a func-
tion, µ, called compatibility function, over a set of
elements, called the universe of discourse, U, where
U = {u1, u2, · · · , un} and µ : U → [0, 1]. A function µ is
called

∏−type if there exists only one point at which
monotonicity changes direction. The effect of above and
below on a

∏−type can be best described by.

µabovex(Ui) =

{
1− µx(Ui) if Ui ≥ Umax

0 otherwise

µbelowx(Ui) =

{
1− µx(Ui) if Ui ≤ Umin

0 otherwise

where Umax(Umin) is the value of U; where µx(Ui) at-
tains its maximum (minimum) value. It is worth to
mention that in many practical applications including
continuous domains, the data collected in real-world ex-
periment are discrete. Therefore, presumably, there are
appropriate segments that are representative knowledge
of the domain. Consequently, this observation can be
best combined by Eshragh and Mamdani’s idea [1]: the
separation of fuzzy spreads into an appropriate number
of segments with well defined characteristics.

Having the knowledge of F1, it now is possible to
represent F2. Let us take under predicate, where
by convention under(a, b) means that a is under b;
where the variables a and b denote points. The rep-
resentation of this predicate can be expressed by three
other predicates, namely, perpendicular (or perpen

41

1st Iranian Conference on Computational Geometry

at

into

into

from

out of

C

D

O
A

Under

Below

Above

Above

Over

Below

B
Z

Through

E

F

’E’ is above ’O’ but not ’over ’O’.

’C’ is above ’O’ and also over ’O’.

’D’ is below ’O’ and also under ’O’.

towards

’F’ is below ’O’ but not under ’O’.

Figure 1: Points and approximate references.

for short), below and online, where online(P,A,B)
mean that point P is on line segment AB; where
perpend(A,B,C,D) represents the line segments AB
and CD are perpendicular. Having the above defini-
tions the logical representation of the predicate under

can be defined.

Table 1 shows the definition of under predicate ex-
pressed in terms of those predicates taking points as
their arguments. Those relations whose algebraic repre-
sentation include inequalities are called order relations.
As is clear from the definitions in Table 1, these pred-
icates are non-order relations since they are defined in
terms of non-order relations on, eqseg and noteq. Sev-
eral redundant noteqs are included in Table 1 to clarify
non-degenerated case specifications.

Note that the valid algebraic representations of the
order relations cannot be obtained in the Gröbner ba-
sis method. This is also true in the geometric domain,
where for instance, between and eqang whose meanings
will be given later, are order relations. As pointed in [5],
all geometric theorems proved so far by the Gröbner ba-
sis method do not include any order relations. This is
also the case in Wu’s method [7].

3 Learning Spatial Graph

Any geometrical shape can be expressed by a logical
expression (Exp). In order to speed up the reasoning
process, it is desirable to find a way for determining the
common part of two or more geometrical shapes. In
other words, learning the generalized common maximal
(GCM) for the current expressions is required.

An n-ary predicate will be represented by
t1(t2, · · · , tn). Each ti is a term, which may be
either a constant, represented by lower case Roman
letters, or a variable shown by upper case Roman
letters. A literal is a list of terms, optionally prefixed
by the logical negation (¬) operator. For instance,
on(o1,o2) and red(X) are both literals. If we consider

Figure 2: Generalized Spatial Graph of Exp1 and Exp2.

two following expressions:

Exp1 =on(o1, o2) ∧ sphere(o1) ∧ red(o1)∧
cube(o2) ∧ red(o2)

Exp2 =on(o3, o4) ∧ pyram(o3) ∧ blue(o3)∧
cube(o4) ∧ red(o4)

where the predicate on(X,Y) means that Y is on X, the
meaning other ones are self meaning. Then we obtain
the following output expression: GCM(Exp1, Exp2) =
on(X,Y) ∧ red(Y) ∧ cube(Y) which is obtained by the
linearization of the spatial graph shown in Figure 2.

An expression graph is a 6-tuple [8] (L,C, σ, θ,K, a)
where L (resp. C) is a finite set of literal (resp. con-
stant) nodes; σ is the literal dimension function L→ Z+

(i.e. the set of positive integers; θ is the literal sign
function L → {+,−}; K is the literal partial content
function I × Z+ → C, such that, if `, i, c) ∈ K, then
i ∈ {1, 2, . . . , σ(`)}; and finally, a is the literal adja-
cency relation, a finite subset of Z+×Z+×L× L along
with the following properties:

1. Symmetry: (i1, i2, `1, `2) ∈ a iff (i2, i1, `2, `1) ∈ a

42

ICCG 2018, Tehran, February 27, 2018

Table 1: Logical representation of the predicate under

under(D,C) (∃A,B) below(D,C) ∧ perpen(A,B,C,D)
perpen(A,B,C,D) noteq(A,B) ∧ noteq(C,D) ∧ ((¬noteq(A,C)∧

rangle(B,A,D)) ∨ (noteq(A,C) ∧ online(A,C,D)∧
rangle(B,A,C)) ∨ (noteq(A,C) ∧ ¬online(A,C,D)∧
online(C,A,B) ∧ rangle(A,C,D)) ∨ (noteq(A,C)∧
¬online(A,C,D) ∧ ¬rangle(C,A,B) ∧ (∃O)
(online(O,A,B) ∧ online(O,C,D) ∧ online(A,O,C))))

rangle(A,B,C) noteq(A,B) ∧ noteq(B,C)(∃O)(midpoint(B,A,O)∧
eqseq(A,C,C,O))

midpoint(O,A,B) noteq(A,B) ∧ collinar(O,A,B)
eqseg(A,B,C,D) length(AB) = length(CD)
collinear(O,A,B) (∃L) on(A,L) ∧ on(B,L) ∧ on(C,L) ∧ noteq(O,A)∧

noteq(O,B) ∧ noteq(A,B)
online(O,A,B) noteq(A,B) ∧ collinear(O,A,B)

Figure 3: Hypotheses: eqang(e,a,d,e,b,c) and
eqseg(e,a,e,b). Task: para(a,b,d).

2. Transitivity: if (i1, i2, `1, `2) ∈ a and (i1, i3, `1, `3)
∈ a, then (i1, i3, `1, `3) ∈ a

3. Consistency: ∀`1, `2 ∈ L and i1, i2 ∈ Z+,
if (`1, i1, c1) ∈ K and (`2, i2, c2) ∈ K, then
(i1, i2, `1, `2) ∈ a iff c1 = c2.

In the method given in [8], the generlaization replaces
just two expresions. We have developped a method, not
reported here, to accepts more than two expresions. A
common LISP software has been writen which implem-
nts and confirms the method.

It is intersting to point out that the expression graph
can also be used for one expression, as in Figure 4
by a combination of ways, including above mentionned
properties, done for the evaluation of the predicate
para(a,b,c,d) of Figure 3 under the hypotheses depicted
at the head part of Figure 4, except ∧¬para(a, b, c, d).

4 Satisfiability of Fuzzy Spatial Expression

Definition: Let Expr be the set of spatial references of
the following form: Expr = Pred1 ∧ Pred2 · · · ∧ Predn,

where Predi for i ≤ 1 ≤ n is a spatial predicate. If at
least one above predicate is a fuzzy one, then the expres-
sion is called fuzzy one. An example of such expression
is the following one.

Expr = online(Z,O,E)︸ ︷︷ ︸
Pred1

∧ above(Z,O)︸ ︷︷ ︸
Pred2

∧

under(D,O)︸ ︷︷ ︸
Pred3

where online(Z,O,E) means that the point Z is on
segment line OE. This example can be used in the in-
terpretation of laser-material experiments where before
perforating Z, we would like to be sure of the following
information:

• ’Z’ is above ’O’ and also on Zapata’s line.
• ’D’ is under ’O’.

where Zapata’s line is a nickname visualized in Figure 1
by L = [O,E]. Let us suppose Expr can be divided
into two sub-expressions, such that Expr ≡ Exprh ∧
(¬Exprc). By convention Exprh and Exprc will be called
problem hypotheses and conclusion, respectively.
Satisfiability: Let Axioms denote the set of application’s
axioms. Then the prof of domain-dependent property
Exprc under a given set of hypotheses Exprh is formal-
ized as follows.

(1): Axioms ∪ Exprc ` Exprc
(2): Axioms |= Exprh → Exprc
(3): Exprh → Exprc
(4): ¬(Exprh → Exprc) ≡ Exprh ∧ (¬Exprc)

≡ Expr

The formula (1) is equivalent to the (2),which implies
that all logical models of Axioms satisfy (3). In refu-
tational reasoning, (4) is proved by showing that the
negation of the Expr is not satisfied by any logical mod-
els of Axioms. However, since it is known that Axioms

43

1st Iranian Conference on Computational Geometry

Figure 4: Expression graph for the task para(a,b,c,d).

is categorical and all its logical models are isomorphics,
it is sufficient to show that logical formula of Expr is
not satisfied by a specific logical model of Axioms. For
complete details of the integrated algebraic and logical
reasoning and termination/correctness proofs, as well as
the limitations of that method, see [5].

Evaluation: In addition to our four fuzzy relations, in
our work, nine predicates taking points as their argu-
ments are used: eqseg, eqang, collinear, online,
midpoint, para, rangle, perpen and line. The predi-
cate line take a plain list of points and declare the exis-
tence of a straight line as well as the fact that the points
in the list are aligned on that line. Furthermore, line is
an order relation like between, where between(P,A,B)
means that point P is located between a pair points A

and B.

Therefore, by this definition, line can appear only in
Expr to maintain the soundness of the integrated rea-
soning. Moreover, since line subsumes non-order rela-
tions collinear and online, we do not use the latter
predicate to describe the hypotheses; collinear and
online are used within a spatial expression to describe
the conclusion. Among the four following predicates on,
between, eqseg and eqang that can be used to describe
Expr, between is substituted by line.

The predicate on is excluded, because no informa-
tion useful for reasoning is specified by describing ei-

ther on(A,L) or on(A,L) ∧ on(B,L), and because the
collinearity among more than three points, on(A,L) ∧
on(B,L) ∧ on(C,L) ∧ · · · can be described using the
predicate collinear. The predicate on(A,L) means
that the point A is on line L and it is used internally by
the evaluator.

To facilitate the evaluation process, it is often use-
ful to define higher-level predicates. As pointed out
in [4, 5], however, their meanings must be specified very
strictly; careless loose definitions. Table 1 shows the
strict definitions of six higher-level predicates, which are
used in [5] following the method described in [4]. Here
the predicate noteq(x, y) implies that two points x and
y are different. This predicate is non-order relation and
is often used to specify subsidiary conditions to exclude
degenerated case. Table 2 shows the algebraic represen-
tation of under(x, y) predicate depending on the seven
predicates of Table 1.

Among the nine mentioned predicates, eqseg, eqang
and para are equivalent relations. It is often possible
to express a fuzzy spatial expression using one of the
mentioned predicate, like this one: para(A,B,C,D) ∧
below(F,E), where the predicate para(A,B,C,D)
means that the line segments AB and CD are par-
allel. This predicate can be logically expressed by
the following representation: ¬(∃P)(online(P,A,B) ∧
online(P,C,D)). As pointed out in [5], this predicate

44

ICCG 2018, Tehran, February 27, 2018

Table 2: Algebraic representations of the predicate under

under(D,C) (∃A,B) below(D,C) ∧ perpen(A,B,C,D)
below(A,B) (∃∏−type)(AB ⊂∏−type) (Ui ≤ Umin) ∧ (1− µx(Ui))
perpen(A,B,C,D) (xA 6= xB ∨ yA 6= yB) ∧ (xC 6= xD ∨ yC 6= yD)∧

(xB − xA)(xD − xC) + (yB − yA)(yD − yC) = 0
noteq(A,B) xA 6= xB ∧ yA 6= yB
eqseg(A,B,C,D) (xB − xA)2 − (yB − yA)2 = (xD − xC)2 − (yD − yC)2

collinear(A,B,C) (yB − xA)xC + (xA − xB)yC + (xByA − xAyB) = 0
online(P,A,B) (xA 6= xB ∨ yA 6= yB) ∧ (yA − yP yB + xAyP − xP yA) = 0
midpoint(P,A,B) (xA 6= xB ∨ yA 6= yB) ∧ (2xP − xA − xB = 0)∧

(2yP − yA − yB = 0)

is defined as a non-order relation. If para is used in the
problem hypotheses, it must be possible to evaluate the
directions of the pair of line segments AB and CD co-
incide with each other or not. To solve this, we report
the definition of ordered parallel (opara for short)

opara(A,B,C,D)⇔ para(A,B,C,D)∧
(∃P)(between(P,A,D) ∧ between(P,B,C))

para(A,B,C,D)⇔ ¬(∃P)(online(P,A,B)

∧online(P,C,D))

When between is included in the spatial expression the
evaluator uses it as it is in the forward reasoning, while
between(P,A,B) is transformed into the non-order re-
lations.

between(P,A,B) ≡ (∃L) ∧ on(P,L) ∧ on(A,L)

∧on(B,L) ∧ (A 6= B) ∧ (A 6= P) ∧ (B 6= P)

As appear from the above relation, the reasoning ca-
pacity about between is very limited. With the integra-
tion of the algebraic representation of para(A,B,C,D)
and between(P,A,B) the above question can be done
by the evaluation of the predicate opara(A,B,C,D) of
the following algebraic representation.

para(A,B,C,D)⇔ (xA 6= xB ∨ yA 6= yB)∧
(xC 6= xD ∨ yC 6= yD) ∧ (yB − yA)xC+

(xA − xB)yC + (xByA − xAyB) 6= 0∧
(xB − xA)(yD − yC)− (xD − xC)(yB − yA) = 0

Since the evaluation of a fuzzy spatial expression Expr

is by essence is equivalent to the problem of unsatisfia-
bility in refutational logic then the expansions of com-
pleteness and the validation of soundness concerning the
inclusions of four mentioned fuzzy relations into the rea-
soning method of Matsuyama and Nitta can be done
provided that the domain-dependent axioms be care-
fully defined.

It is intersting to point out that the expression graph
can also be used just for one expression as in Figure 4

by way of the mentionned properties, done just for the
evaluation of the predicate para(a,b,c,d) of Figure 3 un-
der the hypotheses depicted at the head part of Figure 4,
except ∧¬para(a, b, c, d).

5 Conclusion

The aim of this paper was to introduce the needs for
the integration of three components of the knowledge
represntation for the geometrical shapes. The exper-
iments done on a limited numbers of simples shapes
are satisfactory. Exploration of its capabilities is in
progress.

This paper partially is based on Eshragh and Mam-
dani’s idea [1]: the separation of fuzzy spreads into an
appropriate number of segments with well defined char-
acteristics. Fortunately, in many practical applications
including continuous domains, the data collected in real-
world experiment are discrete. Therefore, presumably,
there are appropriate segments that are representative
knowledge of the domain. If the data are not discrete, by
symbolic constraints, the knowledge represntation can
be conduted [3].

The following are among future problems to be stud-
ied.

• Representation of approximative references like
toward, from , etc. (See Fig. 1). To capture the
intuitive meanings of these relations we have to an-
alyze the fundamental conceptual structure of the
shapes in which using these references make senses.

• Representation of complex shapes by means of log-
ical combination of the simple ones.

• Elaboration of set of spatial axioms (Axioms) for
the practical spatial applications like earthquake
engineering, soil classification, etc.

Acknowledgments

The authors would like appreciatvely thank the sup-
port, help and initiative of Professor Goudarz Sadeghi

45

1st Iranian Conference on Computational Geometry

Heshjin the president of the University of Mohaghegh
Ardabili, for the creation of the new Institute for Re-
search in Artificial Intelligence, where this work is done.

References

[1] F. Eshragh and E.H. Mamdani. A General Approach
to Linguistic Approximation. In: Mamdani et al.
(Eds.), Academic Press, Computer and people se-
ries, pp. 169–187, 1981.

[2] A. Fatholahzadeh. Reasoning with Exact and Ap-
proximate References in Scene Description. In:
ASME, Book VI, Energy Information Management,
Vol. I, Computer in Engineering, George Brown
Convention Center, Houston, Texas Jan. 29 - Feb.
2, pp. 80–88, 1996.

[3] A. Fatholahzadeh. Traitement et Représentation
des Connaissances: Méthodes, Algorithmes et Pro-
grammes. Volumes, I and II, CentraleSupélec,
France, 1993, 2006.

[4] B. Kutzler. Algebraic Approaches to Automated Ge-
ometry Theorem Proving. Ph.D. thesis, University
of Linz, Austria, 1988.

[5] T. Matsuyama and T. Nitta. Geometric Theorem
Proving by Integrated Logical and Algebraic Artifi-
cial Intelligence, pp. 93–114, 1995.

[6] R. Mohr et al. Understanding Positioning from Mul-
tiple Images. Artificial Intelligence, pp. 213–238,
1995.

[7] D. Kapur and J.L. Mundy, editors. Special Volume
on Geometric Reasoning. Artificial Intelligence, pp.
1–412, 1998.

[8] Steven A. Vere. Induction of Concepts in the Pred-
icate Calculus. IJCAI, pp. 281–287, 1975.

46

ICCG 2018, Tehran, February 27, 2018

Increasing-Chord Planar Graphs for Points in Convex Position

Abolfazl Poureidi∗ Davood Bakhshesh† Mohammad Farshi‡

Abstract

In this paper we propose an algorithm that computes an
increasing-chord planar graph for finite sets of points in
convex position in the plane with the geometric dilation
less than π/2 and with no Steiner point.

Keywords: Geometric graph, increasing-chord planar
graph, convex position.

1 Introduction

Alamdari et al. [1] have defined self-approaching graphs.
A geometric path from u to v is self-approaching if while
a point a traversing the path from u to v, for any point
b between a and v on the path, the Euclidean distance
between a and b decreases, that is, for any three points
a, b and c on P in this order from u to v, we have
|ac| ≥ |bc|. An increasing-chord path between u and v
is self-approaching both from u to v and from v to u. It
is shown that the dilation of an increasing-chord path
is at most 2.094 [3]. A graph G is increasing-chord if,
for any pair of distinct vertices u and v of G, there is
an increasing-chord path between them in G.

Dehkordi et al. [2] have proposed the following open
problems. Is it true that, for every convex point set
P , there exists an increasing-chord planar graph G =
(P,E) [2]? Is it true that, for every set P of points ly-
ing on the boundary of an acute triangle, there exists an
increasing-chord planar graph G = (P,E) [2]? In this
paper, we design a polynomial-time algorithm that for
any set S of points in convex position in the plane com-
putes an increasing-chord planar graph whose vertex set
consists only of S with the dilation less than π/2.

Due to page restrictions, some lemmas and proofs are
omitted. There is a full version of the paper in the
appendix.

2 Definitions and Preliminaries

Let p and q be two points in the plane. Let (p, q) be
the line segment joining p and q. Let Cpq be the closed

∗Department of Applied Mathematics, Shahrood University of
Technology, Shahrood, Iran, a.poureidi@shahroodut.ac.ir
†Department of Computer Science, University of Bojnord, Bo-

jnord, Iran, dbakhshesh@gmail.com
‡Combinatorial and Geometric Algorithms Lab., Depart-

ment of Computer Science, Yazd University, Yazd, Iran,
mfarshi@yazd.ac.ir

q

r1 = CNq(r4) = CNq(r5)

r3 = CNq(r2)
r4

r5

slab(a, b)

a
b

s

(a) (b) (c)

slabC(a, ab
⊥)

C

a

br2

Figure 1: Illustrating (a) CNq(r2), CNq(r4) and
CNq(r5), when N(q) = {r1, r2, r3, r4}, (b) slab(a, b),
and (c) slabC(a, ab⊥).

disc with diameter (p, q). Let −→pq denote the ray that
emanates from p and then passes through q. For points
p, q, r ∈ V , such that (q, r) ∈ E, say r is the clockwise
neighbor of p with respect to q, denoted by CNq(p), if
there is no s ∈ NG(q) between rays −→qp and −→qr when−→qp is rotated clockwise around q by a positive angle to
coincide with −→qr (possibly (p, q) /∈ E). See Figure 1(a).

Let S be a set of points in convex position in the
plane, and let CH(S) denote the convex hull of S. Let
Pc(p, q) and Pcc(p, q) be the path between p and q pass-
ing through the boundary of CH(S) in clockwise and
in counterclockwise order from p to q, respectively. Let
Sc(p, q) and Scc(p, q) be the set of all points of S on
Pc(p, q) and on Pcc(p, q), respectively, for some distinct
points p and q in S. Say that P is a convex path between
p1 and pn if for any edge (pi, pi+1) of P all the points of
the path lie to the same side of the line through p1 and
pn, for some 1 ≤ i < n.

Let a and b be points in the plane. Let slab(a, b) be
the closed slab between a and b that is orthogonal to
(a, b), see Figure 1(b). Let C be a closed disc in the
plane. Assume that point b is on the boundary of C
and point a ∈ C is not on the diameter of C passing
through b. Let s be the intersection point between the
boundary of C and the line passing through b that is
orthogonal to (a, b), that is, let s be a point on the
boundary of C such that b is the orthogonal projection
of s onto the line passing through a and b. We denote
slab(b, s) by slabC(a, ab⊥), see Figure 1(c).

Lemma 1 Let p and q be points in the plane. A convex
path between p and q such that Cpq contains the whole
path is increasing-chord with the dilation less than π/2.

47

1st Iranian Conference on Computational Geometry

p q p q

e
f

(a)

a

b
c

d

(b)

Figure 2: Constructing a planar convex path between p
and q lying entirely in Cpq (a) it is possible to add (a, b)
and (c, d) to the graph, but (b) if we add (e, f) to the
graph, then the resulting graph is not planar.

3 Algorithm description

Let S be a finite set of points in convex position in the
plane. In the following we describe an algorithm that
computes an increasing-chord planar graph for S. The
algorithm starts with a graph G having the vertex set S
and the edge set E containing all edges on the bound-
ary of the convex hull of S. Let L be the list of all the
sorted pairs of distinct points of S in non-decreasing
order of their distances, except pairs in E. Then, the
algorithm considers all the pairs of L in non-decreasing
order of their distances. For each pair {p, q} ∈ L, the
algorithm first initializes both sets E1 and E2 to ∅, and
then the algorithm considers to see whether it is possi-
ble to construct a convex path between p and q passing
through some points of Sc(p, q) (respectively, Scc(p, q))
such that Cpq contains the whole path. To do this, the
algorithm considers the shortest path between p and q
in G[Sc(p, q)] and the shortest path between p and q
in G[Scc(p, q)]. The algorithm starts at p (respectively,
q) and then traverses the shortest path between p and
q in G[Sc(p, q)] (respectively, in G[Scc(p, q)]) to reach
q (respectively, p). While the shortest path between p
and q in G[Sc(p, q)] (respectively, in G[Scc(p, q)]) lies
in (the interior or on the boundary of) Cpq, the algo-
rithm continues. (If the shortest path between p and
q in G[Sc(p, q)] or the shortest path between p and q
in G[Scc(p, q)] lies entirely in Cpq, then the algorithm
does nothing.) Assume that some part(s) of the short-
est path between p and q in G[Scc(p, q)] (respectively,
in G[Sc(p, q)]) are outside Cpq. Then, the algorithm
checks whether it is possible to add some edge(s) to E1

(respectively, to E2) without crossing edges of E (ex-
cept possibly at their endpoints) such that there is a
convex path between p and q lying entirely in Cpq. See
Figure 2. If it is possible, then the algorithm adds these
edges to E1 (respectively, to E2), that is, if the algo-
rithm adds an edge (a, b) to E1 or E2, then at least
one point of S on the shortest path between a and b in
G[Scc(p, q)] or G[Sc(p, q)], respectively, is outside Cpq.
See Figure 2(a). If both E1 and E2 are still the empty
sets, then the algorithm adds (p, q) to E. Otherwise, if

Ei, where i = 1, 2, is a nonempty set and the other set
is an empty set or the following property does not hold
for any (a, b) ∈ Ei, then the algorithm adds Ei to E.

Property 2 (for edge (a, b)): There is a pair {u, v} ∈
L with u ∈ Sc(p, q), and v ∈ Scc(p, q), and |pq| ≤ |uv|
such that both a and b are outside Cuv.

The pseudocode of this algorithm is given in Algo-
rithms 3.1 and 3.2. Let (p, q) ∈ E, where {p, q} ∈ L. As
seen from Algorithm 3.1, there are two scenarios to add
(p, q) to E. The first scenario that adds (p, q) to E oc-
curs when Algorithm 3.2 on both inputs (p, q, E1(= ∅))
and (q, p, E2(= ∅)) returns the value false. So, Al-
gorithm Increasing-Chord (in line #7) adds (p, q)
to E. The second scenario that adds (p, q) to E oc-
curs when Algorithm Find-Path on at least one of in-
puts (p, q, E1(= ∅)) and (q, p, E2(= ∅)) returns the value
true and, therefore, Algorithm Increasing-Chord (in
line #7) does not add (p, q) to E. Then, there is a
pair {a, b} ∈ L, where |pq| ≤ |ab|, such that just before
the algorithm processes {a, b}, we have (p, q) /∈ E, but
when the processing of {a, b} is completed, then (p, q)
has been added to E. This occurs when Algorithm
Find-Path on at least one of inputs (a, b, E1(= ∅))
and (b, a, E2(= ∅)) returns the value true. So, E1

or E2 is added to E in line #9 or #11 of Algorithm
Increasing-Chord, respectively, where (p, q) is in E1

or E2. Clearly, both points p and q are in Cab, that is,
(p, q) lies entirely in Cab, and both points a and b are
outside slab(p, q).

4 Properties of the output of Algorithm 3.2

Lemma 3 For any {p, q} ∈ L, Algorithm Find-Path
on input (p, q, E1(= ∅)) terminates.

By Lemma 3, we obtain the following result.

Corollary 4 Algorithm Increasing-Chord on input
S terminates.

Lemma 5 Assume that just before processing {p, q} ∈
L we have a planar graph G = (S,E). If Algorithm
Find-Path on input (p, q, E1(= ∅)) returns the value
true, then there is a convex path between p and q in
G = (S,E ∪ E1) such that Cpq contains the whole path
and G is planar.

Lemma 6 Assume that just before processing {p, q} ∈
L we have a planar graph G = (S,E). Assume that
there is (respectively, it is possible that we add some
edges to E without crossing edges of E, except possibly
at their endpoints, to construct) a convex path between
p and q in G[Scc(p, q)] such that Cpq contains the whole
path. Then, Algorithm Find-Path on input (p, q, E1(=
∅)) returns the value true.

48

ICCG 2018, Tehran, February 27, 2018

Algorithm 3.1: Increasing-Chord(S)

Input: S = {p1, . . . , pn}, where S is a finite set of
points in convex position in the plane.

Output: An increasing-chord planar
graph G = (S,E).

1 E := E(CH(S));

2 Sort the
(
n
2

)
pairs of distinct points of S, except

pairs of E, in non-decreasing order of their
distances and store them in list L;

3 foreach {p, q} ∈ L do
4 B1 = B2 := true; E1 = E2 := ∅;
5 B1 :=Find-Path(p, q, E1);

B2 :=Find-Path(q, p, E2);
6 if B1 = B2 = false then
7 E := E ∪ {(p, q)};
8 else if (B2 = false) ∨ (∀(a, b) ∈ E1,@{u, v} ∈

L s.t. u ∈ Sc(p, q), v ∈ Scc(p, q), |pq| ≤
|uv|, a, b /∈ Cuv) then

9 E := E ∪ E1;
10 else
11 E := E ∪ E2;
12 end

13 end
14 return G := (S,E);

Lemma 7 Assume that just before processing {p, q} ∈
L we have a planar graph G = (S,E). Assume that
Algorithm Find-Path on inputs (p, q, E1(= ∅)) and
(q, p, E2(= ∅)) returns E1 6= ∅ and E2 6= ∅, respectively.
There are no pairs (a1, b1) ∈ E1 and (a2, b2) ∈ E2 such
that Property 2 holds for both (a1, b1) and (a2, b2), when
the algorithm takes as input a finite set of points in con-
vex position in the plane.

As seen from Algorithm 3.1, if the condition in line
#6 does not hold, then B1 = true or B2 = true. If
exactly one of variables B1 and B2 has the value false,
then the condition in line #8 or #10, respectively, holds,
otherwise B1 = B2 = true. By Lemma 7, it is impossi-
ble to hold Property 2 for an edge of E1 and for an edge
of E2 when the algorithm processes one pair of L. So,
we obtain the following result.

Corollary 8 Assume that just before processing
{p, q} ∈ L we have a planar graph G = (S,E).
If Algorithm Find-Path on at least one of inputs
(p, q, E1(= ∅)) and (q, p, E2(= ∅)) returns the value
true, then the condition in line #8 or #10 of Algorithm
Increasing-Chord holds.

5 Properties of edges added by the first scenario

Lemma 9 Let (p, q) be in E, where {p, q} ∈ L. Assume
that just before processing {p, q} we have a planar graph

Algorithm 3.2: Find-Path(p, q, E)

Input: A pair {p, q} of distinct points in S, where
S is a finite set of points in convex position
in the plane.

Output: Either the value true and a (possibly
empty) set of edges between points of S
or the value false and an empty set.

1 E′ = ∅; r := CNp(q); a := p; b := r;
2 while b 6= q do
3 if (b ∈ Cpq) ∧ (((p, q) ∩ (a, b))− {p} = ∅) then
4 r := CNb(a); a := b; b := r;
5 else if (b /∈ Cpq) ∧ (((p, q) ∩ (a, b))− {p} = ∅)

then
6 n1 := a; r := CNb(a);
7 while (r /∈ Cpq) ∧ (((p, q) ∩ (b, r)) = ∅) do
8 a := b; b := r; r := CNb(a);
9 end

10 if ((p, q) ∩ (b, r))− {q} 6= ∅ then
11 return false;
12 else if r 6= q then
13 E′ := E′ ∪ {(n1, r)}; b := CNr(n1);
14 else if n1 = p then
15 return false;
16 else
17 E′ := E′ ∪ {(n1, q)}; b := q;
18 end

19 else if b 6= q then
20 b := CNa(b);
21 end

22 end
23 E = E′; return true;

and there is (a, b) ∈ E (with |ab| ≤ |pq|) such that has
a nonempty intersection with (p, q), except possibly at
their endpoints. If the first scenario occurs for (p, q),
then at least one of points a and b is in Cpq.

Lemma 10 Assume that just before adding (p, q) to
E, where {p, q} ∈ L, we have a planar graph and
there are at least two edges (a, b) and (c, d) of E (with
lengths at most |pq|) such that points a and c are on
Pc(p, q), and points b and d are on Pcc(p, q), and (a, b)
has a nonempty intersection with (p, q), and (c, d) has
a nonempty intersection with (p, q), except possibly at
their endpoints. If a, d ∈ Cpq and b, c /∈ Cpq, then the
first scenario cannot occur for (p, q).

6 An increasing-chord planar graph returned by Al-
gorithm 3.1

Lemma 11 The output of Algorithm 3.1 on input S is
a planar graph and there is a convex path in the output
graph between any two distinct points p, q ∈ S lying en-
tirely in Cpq, when S is a finite set of points in convex

49

1st Iranian Conference on Computational Geometry

position in the plane.

Proof. Clearly, any edge on the boundary of CH(S)
does not intersect the edge between any two points of
S, except possibly at their endpoints, and for all edges
on the boundary of CH(S) the claim in the lemma
holds. For distinct points p, q ∈ S, where (p, q) is no
edge on the boundary of CH(S), we prove the claim
in the lemma by induction on the rank of {p, q} in L,
where L is the list of the

(
n
2

)
sorted pairs of distinct

points of S in non-decreasing order of their distances,
except pairs that are endpoints of edges on the bound-
ary of the convex hull of S.

Base case: Let {r, s} be the first pair in L. If the
first scenario occurs for (r, s), then clearly the resulting
graph is planar and there is a convex path in the graph
between points r and s lying entirely in Crs. Other-
wise, Algorithm Find-Path on at least one of inputs
(r, s, E1(= ∅)) and (s, r, E2(= ∅)) (in line #5) returns
the value true. By Corollary 8 at least one of the con-
ditions in lines #8 and #10 of Algorithm Increasing-
Chord holds. So, Algorithm Increasing-Chord (in
line #9 or #11) adds E1 or E2, respectively, to E. By
Lemma 5 the resulting graph is planar and there is a
convex path between r and s in the graph such that
Crs contains the whole path.
Induction hypothesis: Assume that just before

Algorithm Increasing-Chord processes {p, q}, where
|rs| ≤ |pq|, the graph G = (S,E) is planar and there
is a convex path between points of any pair {a, b} ∈ L
with |ab| ≤ |pq| such that Cab contains the whole path.
The inductive step: Suppose that the algorithm

processes {p, q}. There are two possible cases to con-
sider, depending on whether or not (p, q) is added to E
in line #7 of Algorithm Increasing-Chord.
Case 1: Edge (p, q) is not added to E in line #7 of
Algorithm Increasing-Chord.

Similar to the base case the resulting graph is planar
and there is a convex path between p and q in the graph
such that Cpq contains the whole path.
Case 2: Edge (p, q) is added to E in line #7 of Al-
gorithm Increasing-Chord, that is, the first scenario
occurs for (p, q). Clearly, there is a convex path be-
tween p and q in the graph lying entirely in Cpq. We
claim that any edge of E has an empty intersection with
(p, q), except possibly at their endpoints.

Assume (r1, s1), (r2, s2), . . . , (rk, sk) ∈ E, where k ≥
1, are all edges of E that have a nonempty intersection
with (p, q), except possibly at their endpoints. Assume
without loss of generality that each ri, for 1 ≤ i ≤
k, is on Pc(p, q) with |Pc(p, r1)| ≤ |Pc(p, r2)| ≤ . . . ≤
|Pc(p, rk)|. (Since just before processing {p, q} we have
a planar graph, each si is on Pcc(p, q) with |Pcc(p, s1)| ≤
|Pcc(p, s2)| ≤ . . . ≤ |Pcc(p, sk)|.) See Figure 3.

By Lemma 9, at least one of points ri and si is in (the
interior or on the boundary of) Cpq, for 1 ≤ i ≤ k. We

qp

r1

s1

r2 r3

s2 s3
Cpq

Figure 3: For proof of Lemma 11.

need only to consider two cases: (i) for all 1 ≤ i ≤ k,
every ri is in Cpq or every si is in Cpq and (ii) there
are edges (rj , sj) and (rl, sl) with 1 ≤ j, l ≤ k such that
rj , sl ∈ Cpq and sj , rl /∈ Cpq. (Assume (rj , sj) = (a, b)
and (rj , sj) = (c, d).) In the former case assume with-
out loss of generality that all points s1, s2, . . . , sk are
in Cpq. By assumption we have a planar graph just be-
fore adding (p, q) to E. So, there is (respectively, it is
possible that we add some edges to E without crossing
edges of E, except possibly at their endpoints, to con-
struct) a convex path between p and q passing through
points s1, s2, . . . , sk such that Cpq contains the whole
path. As an example, consider path (p, s1, s2, . . . , sk, q).
It follows from Lemma 6 that Algorithm Find-Path on
input (p, q, E1(= ∅)) returns the value true, i.e., Algo-
rithm Increasing-Chord (in line #7) does not add
(p, q) to E. So, the first scenario cannot occur for (p, q),
a contradiction. By Lemma 10 the latter case never
occurs. Hence, the resulting graph is planar. �

Clearly, the running time of the algorithm of this paper
is polynomial in |S|. So, by Lemmas 1 and 11 we get
the following result.

Theorem 12 There is a polynomial-time algorithm
that computes an increasing-chord planar graph for a
set of points in convex position in the plane with no
Steiner point and with the dilation less than π/2.

References

[1] S. Alamdari, T. M. Chan, E. Grant, A. Lubiw, and
V. Pathak. Self-approaching graphs. In Interna-
tional Symposium on Graph Drawing, pages 260–271.
Springer, 2012.

[2] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. J. Graph Al-
gorithms Appl., 19(2):761–778, 2015.

[3] G. Rote. Curves with increasing chords. In Mathemati-
cal Proceedings of the Cambridge Philosophical Society,
volume 115, pages 1–12. Cambridge Univ Press, 1994.

50

ICCG 2018, Tehran, February 27, 2018

Appendix

Abstract

In this paper we propose an algorithm that computes an
increasing-chord planar graph for finite sets of points in con-
vex position in the plane with the geometric dilation less
than π/2 and with no Steiner point.

Keywords: Geometric graph, increasing-chord planar graph,
convex position.

1 Introduction

A geometric graph is a weighted graph on a point set in
Rd as the vertex set that has straight-line segments between
vertices as the edge set, where the weight of an edge is the
Euclidean distance between its endpoints. A straight-line
drawing of a graph G in Rd is an embedding of G as a geo-
metric graph in Rd.

Rao et al. [14] have introduced the notion of greedy graph
drawings. Geometric path (p1, p2, . . . , pn) is a greedy path
from p1 to pn if |pi+1pn| < |pipn|, for all 1 ≤ i < n, where
|pq| denotes the Euclidean distance between points p and q.
A geometric graph is greedy if for any ordered pair of distinct
vertices u and v of the graph there is a greedy path from u
to v in the graph. Greedy graph drawings have received a
lot of attention in recent years [3, 4, 6, 7, 8, 10, 13]. The
main motivation for studying greedy graph drawings is their
application in a wide variety of ad hoc and sensor-net envi-
ronments [14]. It is possible to have greedy graph drawings
with an unbounded dilation, where the dilation of a geomet-
ric graph is the maximum of the ratio of the shortest path
distance between every pair of distinct vertices in the graph
to their actual Euclidean distance.

Alamdari et al. [1] have defined self-approaching graphs
that not only have the properties of greedy graph drawings
but also their geometric dilation is at most 5.3332 [9]. A
geometric path from u to v is self-approaching if while a
point a traversing the path from u to v, for any point b be-
tween a and v on the path (possibly b is an intermediate
point on segments of the path), the Euclidean distance be-
tween a and b decreases, that is, for any three points a, b
and c (not necessarily vertices) on P in this order from u
to v, the inequality |ac| ≥ |bc| holds. An increasing-chord
path between u and v is self-approaching both from u to v
and from v to u. It is shown that the geometric dilation of
an increasing-chord path is at most 2.094 [15]. A geometric
graph G is increasing-chord (respectively, self-approaching)
if, for any (respectively, ordered) pair of distinct vertices u
and v of G, there is an increasing-chord path between u and
v (respectively, a self-approaching path from u to v) in G.

Alamdari et al. [1] have designed polynomial-time algo-
rithms to test whether a given path in the plane or R3 is self-
approaching and Alamdari et al. [1] have also shown that rec-
ognizing self-approaching graph drawings in R3 is NP-hard.
Alamdari et al. [1] have completely characterized trees that
have self-approaching drawings. Furthermore, Alamdari et
al. [1], when given a point set S in Rd, have designed a
polynomial-time algorithm to compute a linear sized self-
approaching graph spanning S with O(|S|) Steiner points.

Mastakas and Symvonis [11] have designed a polynomial-
time algorithm that for any set S of points in convex position
in the plane computes a linear sized increasing-chord graph
with at most one Steiner point spanning S.

Nöllenburg et al. [12] have proved that there is an
increasing-chord drawing for planar triangulations and there
is an increasing-chord planar drawing for planar 3-trees. Fur-
thermore, Nöllenburg et al. [12] have completely charac-
terized trees that have self-approaching or increasing-chord
drawings in the hyperbolic plane.

Dehkordi et al. [5] have proposed a polynomial-time algo-
rithm that, when given a point set S in the plane, computes
an increasing-chord planar graph whose vertex set consists of
S andO(|S|) Steiner points. Furthermore, Dehkordi et al. [5]
have proved that, when given a set S of points in convex po-
sition in the plane, there is an increasing-chord graph with
S as the vertex set and O(|S| log |S|) edges.

Dehkordi et al. [5] have also proposed the following open
problems. Is it true that, for every (convex) point set P ,
there exists an increasing-chord planar graph G = (P,E) [5]?
Is it true that, for every set P of points lying on the bound-
ary of an acute triangle, there exists an increasing-chord
planar graph G = (P,E) [5]? In this paper, we design a
polynomial-time algorithm that for any set S of points in
convex position in the plane computes an increasing-chord
planar graph whose vertex set consists only of S (i.e., with
no Steiner point) with the geometric dilation less than π/2
answering two open problems of Dehkordi et al. [5]. Note
that the best know geometric dilation of planar spanners for
sets of points in convex position in the plane is 1.88 [2]. So,
the algorithm also improves the geometric dilation of planar
spanners for sets of points in convex position in the plane.

The organization of the paper is as follows. In Section 2
we begin with some preliminaries. In Section 3 we describe
the algorithm and give the pseudocode of the algorithm (Al-
gorithms 3.1 and 3.2). In Section 4 we state some properties
of the output graph of the algorithm (i.e., Algorithm 3.2),
when the algorithm (i.e., Algorithm 3.1) takes as input a
set of points in convex position in the plane. In section 5 we
state some properties for some edges of the output graph. In
Section 6 we prove that the output of the algorithm for any
set of points in convex position in the plane is an increasing-
chord planar graph with the geometric dilation less than π/2.
Finally, in Section 7 we conclude and close with some open
problems.

2 Definitions and Preliminaries

Let p, q and r be three distinct points in the plane. Let
(p, q) be the straight-line segment joining p and q, and let
|pq| denote the Euclidean distance between p and q. Let
lpq denote the line passing through p that is orthogonal to
the line segment (p, q). Let Cpq be the closed disc with
diameter (p, q). Let −→pq denote the ray that emanates from
p and then passes through q, and let ray(p,−→qr) denote the
ray that emanates from p and is co-directed with −→qr. We
say that point p is the source of rays −→pq and ray(p,−→qr). Let
∠pqr denote the angle between rays −→qp and −→qr. Let −→r1 and
−→r2 be two distinct rays in the plane. The angle between
−→r1 and −→r2 is the angle between translated rays −→r1 and −→r2

51

1st Iranian Conference on Computational Geometry

q

r1 = CNq(r4) = CNq(r5)

r3 = CNq(r2)
r4

r5

slab(a, b)

a
b

s

(a) (b) (c)

slabC(a, ab
⊥)

C

a

br2

Figure 1: Illustrating (a) CNq(r2), CNq(r4) and
CNq(r5), when N(q) = {r1, r2, r3, r4}, (b) slab(a, b),
and (c) slabC(a, ab⊥).

such that their sources are at the origin. Let G = (V,E)
be a graph, and for p ∈ V let NG(p) denote the set of all
incident vertices to p in G. For any V ′ ⊆ V let G[V ′] be
a subgraph of G whose vertex set is V ′ and whose edge set
consists of all edges in E that have both endpoints in V ′. For
points p, q, r ∈ V , such that (q, r) ∈ E, say r is the clockwise
neighbor of p with respect to q, denoted by CNq(p), if there
is no s ∈ NG(q) between rays −→qp and −→qr when −→qp is rotated
clockwise around q by a positive angle to coincide with −→qr
(possibly (p, q) /∈ E). See Figure 1(a).

Let S be a set of points in convex position in the plane,
and let CH(S) denote the convex hull of S. Let Pc(p, q) and
Pcc(p, q) be the path between p and q passing through the
boundary of CH(S) in clockwise and in counterclockwise
order from p to q, respectively. Let Sc(p, q) and Scc(p, q)
be the set of all points of S on Pc(p, q) and on Pcc(p, q),
respectively, for some distinct points p and q in S. Clearly,
we have Sc(p, q) ∪ Scc(p, q) = S and Sc(p, q) ∩ Scc(p, q) =
{p, q}. Let P = (p1, p2, . . . , pn) be a path between p1 and
pn in the plane for some integer n > 1. The length of path
P , denoted by |P |, is defined as the sum of the lengths of its
edges. Say that P is a convex path between p1 and pn if for
any edge (pi, pi+1) of P all the points of the path lie to the
same side of the line through p1 and pn, for some 1 ≤ i < n.

Let a and b be points in the plane. Let slab(a, b) be the
closed slab between a and b that is orthogonal to (a, b), see
Figure 1(b). Let C be a closed disc in the plane. Assume
that point b is on the boundary of C and point a ∈ C is
not on the diameter of C passing through b. Let s be the
intersection point between the boundary of C and the line
passing through b that is orthogonal to the line segment
(a, b), that is, let s be a point on the boundary of C such
that b is the orthogonal projection of s onto the line passing
through a and b. We denote slab(b, s) by slabC(a, ab⊥), see
Figure 1(c).

Proposition 1 Let p and q be points in the plane. The
geometric dilation of any convex path between p and q such
that Cpq contains the whole path is less than π/2.

Proof. Let P = (p1(= p), p2, . . . , pn(= q)), for some integer
n > 2, be a convex path between p and q that Cpq contains
the whole path. Assume (without loss of generality) that
points p and q are on a horizontal line and p is to the left of q,
and all points of P are not above (p, q). See Figure 2(a). Let
Arc(p, q) denote the lower boundary of Cpq between points
p and q. Let Arc(pi, pi+1) denote the intersection between

p q

a

b

c

p(= p1) q(= pn)
pi

pi+1 pj

pj+1

(a) (b)

Arc(pj, pj+1)Arc(pi, pi+1)

Figure 2: For proofs of (a) proposition 1 and (b)
Lemma 2.

slab(pi, pi+1) and Arc(p, q), for all 1 ≤ i < n. It is easy
to see that the length of Arc(pi, pi+1) is less than |pipi+1|.
Clearly, for any two distinct indices 1 ≤ i, j < n we have
Arc(pi, pi+1)∩Arc(pj , pj+1) ⊆ {u}, where u is either pi or pj .
So, |P | is less than the length of Arc(p, q). This completes
the proof. �

Lemma 2 Let p and q be points in the plane. A convex
path between p and q such that Cpq contains the whole path
is increasing-chord with the geometric dilation less than π/2.

Proof. Let P = (p1(= p), p2, . . . , pn(= q)), for some integer
n > 2, be a convex path between p and q that Cpq contains
the whole path. Consider any three distinct points a, b, and
c on P in this order from p to q. Clearly, points a, b, and
c are in Cpq. Since P is a convex path between p and q,

point a is between or on rays
−→
bp and ray(b,

−→
cb) and point c

is between or on rays
−→
bq and ray(b,

−→
ab). See Figure 2. So,

we get ∠abc ≥ π/2 and, therefore, |ac| > |bc| and |ac| > |ab|.
Therefore, P is an increasing-chord path between p and q.
By Proposition 1, the geometric dilation of P is less than
π/2. This completes the proof. �

3 Algorithm description

Let S be a finite set of points in convex position in the plane.
In the following we describe an algorithm that computes an
increasing-chord planar graph for S. The algorithm starts
with a graph G having the vertex set S and the edge set
E containing all edges on the boundary of the convex hull
of S. Let L be the list of all the sorted pairs of distinct
points of S in non-decreasing order of their distances, ex-
cept pairs in E. Then, the algorithm considers all the pairs
of L in non-decreasing order of their distances. For each pair
{p, q} ∈ L, the algorithm first initializes both sets E1 and E2

to ∅, and then the algorithm considers to see whether it is
possible to construct a convex path between p and q passing
through some points of Sc(p, q) (respectively, Scc(p, q)) such
that Cpq contains the whole path. To do this, the algorithm
considers the shortest path between p and q in G[Sc(p, q)]
and the shortest path between p and q in G[Scc(p, q)]. The
algorithm starts at p (respectively, q) and then traverses
the shortest path between p and q in G[Sc(p, q)] (respec-
tively, in G[Scc(p, q)]) to reach q (respectively, p). While the
shortest path between p and q in G[Sc(p, q)] (respectively,
in G[Scc(p, q)]) lies in (the interior or on the boundary of)
Cpq, the algorithm continues. (If the shortest path between

52

ICCG 2018, Tehran, February 27, 2018

p q p q

e
f

(a)

a

b
c

d

(b)

Figure 3: Constructing a planar convex path between p
and q lying entirely in Cpq (a) it is possible to add (a, b)
and (c, d) to the graph, but (b) if we add (e, f) to the
graph, then the resulting graph is not planar.

p and q in G[Sc(p, q)] or the shortest path between p and q
in G[Scc(p, q)] lies entirely in Cpq, then the algorithm does
nothing.) Assume that some part(s) of the shortest path be-
tween p and q in G[Scc(p, q)] (respectively, in G[Sc(p, q)]) are
outside Cpq. Then, the algorithm checks whether it is possi-
ble to add some edge(s) to E1 (respectively, to E2) without
crossing edges of E (except possibly at their endpoints) such
that there is a convex path between p and q lying entirely in
Cpq. See Figure 3. If it is possible, then the algorithm adds
these edges to E1 (respectively, to E2), that is, if the algo-
rithm adds an edge (a, b) to E1 or E2, then at least one point
of S on the shortest path between a and b in G[Scc(p, q)] or
G[Sc(p, q)], respectively, is outside Cpq. See Figure 3(a).
If both E1 and E2 are still the empty sets, then the algo-
rithm adds (p, q) to E. Otherwise, if Ei, where i = 1, 2,
is a nonempty set and the other set is an empty set or the
following property does not hold for any (a, b) ∈ Ei, then
the algorithm adds Ei to E.

Property 3 (for edge (a, b)): There is a pair {u, v} ∈ L
with u ∈ Sc(p, q), and v ∈ Scc(p, q), and |pq| ≤ |uv| such
that both a and b are outside Cuv.

The pseudocode of this algorithm is given in Algo-
rithms 3.1 and 3.2. Let (p, q) ∈ E, where {p, q} ∈ L.
As seen from Algorithm 3.1 (i.e., Algorithm Increasing-
Chord), there are two scenarios to add (p, q) to E. The first
scenario that adds (p, q) to E occurs when Algorithm 3.2
(i.e., Algorithm Find-Path) on both inputs (p, q, E1(= ∅))
and (q, p, E2(= ∅)) returns the value false. So, Algorithm
Increasing-Chord (in line #7) adds (p, q) to E. The sec-
ond scenario that adds (p, q) to E occurs when Algorithm
Find-Path on at least one of inputs (p, q, E1(= ∅)) and
(q, p, E2(= ∅)) returns the value true and, therefore, Algo-
rithm Increasing-Chord (in line #7) does not add (p, q)
to E. Then, there is a pair {a, b} ∈ L, where |pq| ≤ |ab|,
such that just before the algorithm processes {a, b}, we have
(p, q) /∈ E, but when the processing of {a, b} is completed,
then (p, q) has been added to E. This occurs when Algo-
rithm Find-Path on at least one of inputs (a, b, E1(= ∅))
and (b, a, E2(= ∅)) returns the value true. So, E1 or E2 is
added to E in line #9 or #11 of Algorithm Increasing-
Chord, respectively, where (p, q) is in E1 or E2. Clearly,
both points p and q are in (the interior or on the boundary
of) Cab, that is, (p, q) lies entirely in Cab, and both points a
and b are outside slab(p, q).

Algorithm 3.1: Increasing-Chord(S)

Input: S = {p1, . . . , pn}, where S is a finite set of
points in convex position in the plane.

Output: An increasing-chord planar
graph G = (S,E).

1 E := E(CH(S)); /* initialize E to the

edges of CH(S) */

2 Sort the
(
n
2

)
pairs of distinct points of S, except

pairs of E, in non-decreasing order of their
distances and store them in list L;

3 foreach {p, q} ∈ L do
4 B1 = B2 := true; E1 = E2 := ∅;
5 B1 :=Find-Path(p, q, E1);

B2 :=Find-Path(q, p, E2);
6 if B1 = B2 = false then
7 E := E ∪ {(p, q)};
8 else if (B2 = false) ∨ (∀(a, b) ∈ E1,@{u, v} ∈

L s.t. u ∈ Sc(p, q), v ∈ Scc(p, q), |pq| ≤
|uv|, a, b /∈ Cuv) then

9 E := E ∪ E1;
10 else if (B1 = false) ∨ (∀(a, b) ∈ E2,@{u, v} ∈

L s.t. u ∈ Sc(p, q), v ∈ Scc(p, q), |pq| ≤
|uv|, a, b /∈ Cuv) then

11 E := E ∪ E2;
12 end

13 end
14 return G := (S,E);

4 Properties of the output of Algorithm 3.2

Recall that S is a finite set of points in convex position in
the plane. Also recall that L is the list of the

(
n
2

)
sorted

pairs of distinct points of S, except pairs that are endpoints
of edges on the boundary of CH(S), in non-decreasing order
of their distances. Let G = (S,E) be the output graph of Al-
gorithm Increasing-Chord on input S. In this section we
first prove that for any {p, q} ∈ L Algorithm Find-Path on
input (p, q, E1(= ∅)) terminates. It follows that Algorithm
Increasing-Chord on input S terminates. Next, we prove
that Algorithm Find-Path adds edges to E1 to construct an
increasing-chord path between p and q in G = (S,E∪E1) if it
is possible, otherwise, returns the value false. Let E1 6= ∅,
and assume that (a, b) ∈ E1 with |Pcc(p, a)| < |Pcc(p, b)|.
Then, we prove that all points on Pcc(a, b), except points a
and b, are outside Cpq. Finally, we prove that if Algorithm
Find-Path on inputs (p, q, E1(= ∅)) and (q, p, E2(= ∅)) re-
turns E1 6= ∅ and E2 6= ∅, respectively, then there are no
pairs (a1, b1) ∈ E1 and (a2, b2) ∈ E2 such that Property 3
holds for both (a1, b1) and (a2, b2).

Lemma 4 For any {p, q} ∈ L, Algorithm Find-Path on
input (p, q, E1(= ∅)) terminates.

Proof. Clearly, if Algorithm Find-Path on input
(p, q, E1(= ∅)) (in line #11 or #15) executes the instruction
“return false”, then Algorithm Find-Path on input
(p, q, E1(= ∅)) terminates. So, we assume that Algorithm

53

1st Iranian Conference on Computational Geometry

Algorithm 3.2: Find-Path(p, q, E)

Input: A pair {p, q} of distinct points in S, where
S is a finite set of points in convex position
in the plane.

Output: Either the value true and a (possibly
empty) set of edges between points of S
or the value false and an empty set.

1 E′ = ∅; r := CNp(q); a := p; b := r;
2 while b 6= q do
3 if (b ∈ Cpq) ∧ (((p, q) ∩ (a, b))− {p} = ∅) then

/* b is on Pcc(p, q) */

4 r := CNb(a); a := b; b := r;
5 else if (b /∈ Cpq) ∧ (((p, q) ∩ (a, b))− {p} = ∅)

then/* b is on Pcc(p, q) */

6 n1 := a; r := CNb(a);
7 while (r /∈ Cpq) ∧ (((p, q) ∩ (b, r)) = ∅) do

/* r is on Pcc(p, q) */

8 a := b; b := r; r := CNb(a);
9 end

10 if ((p, q)∩ (b, r))− {q} 6= ∅ then /* b /∈ Cpq

is on Pcc(p, q) and r(6= p, q) is on

Pc(p, q) */

11 return false;
12 else if r 6= q then
13 E′ := E′ ∪ {(n1, r)}; b := CNr(n1);
14 else if n1 = p then/* All points

Pcc(p, q), except points p and q, are

outside Cpq */

15 return false;
16 else
17 E′ := E′ ∪ {(n1, q)}; b := q;
18 end

19 else if b 6= q then /* a ∈ Cpq is on Pcc(p, q)
and b is on Pc(p, q) */

20 b := CNa(b);
21 end

22 end
23 E = E′;
24 return true;

Find-Path on input (p, q, E1(= ∅)) does not execute the
instruction “return false”.

In the rest of the proof we compute a sequence of points
in Scc(p, q). Elements of the sequence are points of Scc(p, q)
which are generated by functions CNa(b), for some points
a and b, in lines #1, #4, #6, #8, #13, and #20 of Algo-
rithm Find-Path on input (p, q, E1(= ∅)). We place these
points in the sequence in the order that they are generated
by Algorithm Find-Path on input (p, q, E1(= ∅)). Next, we
prove that the sequence is finite. This completes the proof.

Let q1 := p and q2 := CNp(q), where CNp(q) is com-
puted in line #1 of Algorithm Find-Path. Since {p, q} ∈ L,
we have q2 6= q. It is easy to see that both q1 and q2 lie
on Pcc(p, q) and we have |Pcc(q1, q)| > |Pcc(q2, q)|. Since
point q2 lies on Pcc(p, q), the condition in line #3 or #5

qp(= q1)

CN i−1
q2

(q1) CN i
q2
(q1)

q2

q3

Figure 4: For proof of Lemma 4.

of Algorithm Find-Path holds. Consider CNq2(q1), where
CNq2(q1) is computed in line #4 or #6 of Algorithm Find-
Path. (It is easy to see that when CNq2(q1) = q, then
Algorithm Find-Path on input (p, q, E1(= ∅)) terminates.)
It is possible that CNq2(q1) lies on Pc(p, q) or on Pcc(p, q). If
the condition in line #3, #5, #7, or #12 of Algorithm Find-
Path holds for CNq2(q1), then CNq2(q1) lies on Pcc(p, q) and
if the condition in line #19 of Algorithm Find-Path holds
for CNq2(q1), then CNq2(q1) lies on Pc(p, q). (It is easy to
see that when the condition in line #16 of Algorithm Find-
Path holds for CNq2(q1), then Algorithm Find-Path on in-
put (p, q, E1(= ∅)) terminates.) If CNq2(q1) lies on Pcc(p, q),
then we define q3 := CNq2(q1).

Suppose that CNq2(q1) lies on Pc(p, q). We define
CN1

a (b) := CNa(b), and CN i
a(b) := CNa(CN i−1

a (b)), where
a and b are points in the plane and i ≥ 2. It is easy to see
that if both CN i−1

q2 (q1) and CN i
q2(q1) lie on Pc(p, q), then

we have |Pc(CN
i−1
q2 (q1), q)| > |Pc(CN

i
q2(q1), q)|, see Fig-

ure 4. Hence, there is an integer 2 ≤ j < |NG(q2)| such that
CN j

q2(q1) lies on Pcc(p, q) and, for all i < j, point CN i
q2(q1),

where CN i
q2(q1) 6= q, lies on Pc(p, q). (It is easy to see that

when CN j
q2(q1) = q, then Algorithm Find-Path on input

(p, q, E1(= ∅)) terminates.) Thus, we define q3 := CN j
q2(q1).

It is clear that q3 is between or on rays ray(q2,
−−→q1q2) and

−→q2q, see Figure 4. Hence, we have |Pcc(q2, q)| > |Pcc(q3, q)|.
(The condition in line #19 of Algorithm Find-Path holds
for CN i

q2(q1), when i < j.)
Then, Algorithm Find-Path on input (p, q, E1) computes

CNq3(q2) in line #4, #6, #8, #13, or #20. (It is easy to see
that when CNq3(q2) = q, then Algorithm Find-Path on in-
put (p, q, E1) terminates.) If CNq3(q2) lies on Pcc(p, q), then
we define q4 := CNq3(q2). Otherwise, there is an integer j,
where 2 ≤ j < |NG(q3)|, such that CN j

q3(q2) lies on Pcc(p, q)
and, for all i < j, point CN i

q3(q2), where CN i
q3(q2) 6= q, lies

on Pc(p, q). Thus, we define q4 := CN j
q3(q2). It is easy to

see that |Pcc(q3, q)| > |Pcc(q4, q)|. Similarly, we define qk
for k ≥ 5. We have |Pcc(qk−1, q)| > |Pcc(qk, q)|.

Let P := (q1, q2, q3, . . .). Any qi lies on Pcc(p, q) and we
have |Pcc(qi, q)| > |Pcc(qi+1, q)|, for all i ≥ 1. It follows
that all points q1, q2, . . . are pairwise distinct. Since S is
finite, the sequence P is also finite, that is, we have P =
(q1, q2, . . . , qk(= q)), for some k < n. �

By Lemma 4, we obtain the following result.

Corollary 5 Algorithm Increasing-Chord on input S
terminates.

Lemma 6 Assume that just before processing {p, q} ∈ L we
have a planar graph G = (S,E). If Algorithm Find-Path

54

ICCG 2018, Tehran, February 27, 2018

(a) (b)

p

vi vi+1

q

Cpq

a1 a2

p q

Cpq

a1 a2

vi+1

vi

Figure 5: For proof of Lemma 6.

on input (p, q, E1(= ∅)) returns the value true, then there is
a convex path between p and q in G = (S,E ∪E1) such that
Cpq contains the whole path and G is planar.

Proof. By Lemma 4, Algorithm Find-Path on input
(p, q, E1(= ∅)) terminates. Let P := (q1(= p), q2, . . . , qk(=
q)) be the sequence in the proof of Lemma 4, that is, the
sequence contains points on Pcc(p, q) that Algorithm Find-
Path on input (p, q, E1(= ∅)) considers these points. Com-
pute sequence P ′ := (v1, v2, . . . , vl) of points in S, a subse-
quence of P , as follows. Set i := 1. We consider all elements
of P starting at p and ending at q. If we reach qj , where
1 ≤ j ≤ k, such that qj is in Cpq, then vi is set to qj and i
is set to i + 1. Clearly, we have v1 := p, and vl := q, and
|Pcc(vi, q)| > |Pcc(vi+1, q)|, for all 1 ≤ i < l, and all points of
P ′ lie on Pcc(p, q). It is easy to see that if E1 is a nonempty
set, then for any edge (a, b) in E1 there is an integer i, with
1 ≤ i < l, such that {a, b} = {vi, vi+1}. By assumption
just before processing {p, q} we have a planar graph. In the
following we prove that, for all 1 ≤ i < l, there is an edge
between vi and vi+1 in E ∪E1 without crossing edges of E,
except possibly at their endpoints.

It is easy to see that, for all 1 ≤ i < l, we have ei-
ther (vi, vi+1) ∈ E or (vi, vi+1) ∈ E1. Clearly, if E1 = ∅,
then there is nothing to be done. Let (vi, vi+1), for some
1 ≤ i < l, be in E1, i.e., Algorithm Find-Path on input
(p, q, E1(= ∅)) (in line #13 or #17) adds (vi, vi+1) to E1.
Let (a1, a2, . . . , am), for some m ≥ 1, be the sequence of all
points in S which aj is on Pcc(vi, vi+1), for all 1 ≤ j ≤ m,
and just before adding (vi, vi+1) to E1, the condition in
line #7 of Algorithm Find-Path holds for them starting
at a1 and ending at am. See Figure 5. As seen from Al-
gorithm Find-Path, edges (vi, a1), (a1, a2), . . . , (am−1, am),
and (am, vi+1) are in E, and also there is no edge of E with
an endpoint aj , for some 1 ≤ j ≤ m, having a nonempty
intersection with (p, q), except possibly at their endpoints.
If there is such edge, then the condition in line #10 of Al-
gorithm Find-Path holds, a contradiction. Also, it is im-
possible to have an edge of E that crosses (vi, vi+1), but the
edge does not cross (p, q). If there is such edge, then the al-
gorithm does not consider at least one of points vi and vi+1,
see Figure 5. In Figure 5(a), if the dotted line segment is
an edge of E, then the algorithm does not consider vi, and
in Figure 5(b), if the dotted line segment is an edge of E,
then the algorithm does not consider vi+1. So, (vi, vi+1) is
an edge of E1 without crossing edges of E, except possibly
at their endpoints. So, P ′ is a path between points p and q
in G = (S,E ∪ E1) and G = (S,E ∪ E1) is a planar graph.

(b)

p q

Cpq

b

r

(c)

p q

Cpq

(a)

p q

Cpq

u

a

c
b

d
Ccd

Figure 6: For proof of Lemmas 6 and 8.

Since all points of P ′ are on Pcc(p, q) and in Cpq, it follows
that P ′ is a convex path between points p and q such that
Cpq contains the whole path. So, we are done. �

Lemma 7 Assume that just before processing {p, q} ∈ L
we have a planar graph G = (S,E). Assume that there is
(respectively, it is possible that we add some edges to E with-
out crossing edges of E, except possibly at their endpoints, to
construct) a convex path between p and q in G[Scc(p, q)] such
that Cpq contains the whole path. Then, Algorithm Find-
Path on input (p, q, E1(= ∅)) returns the value true.

Proof. Assume (for a contradiction) that Algorithm Find-
Path on input (p, q, E1(= ∅)) returns the value false, that
is, Algorithm Find-Path on input (p, q, E1(= ∅)) executes
the instruction “return false” in line #11 or #15. If Algo-
rithm Find-Path on input (p, q, E1(= ∅)) executes the in-
struction “return false” in line #11, then there are points
b ∈ Scc(p, q) and r ∈ Sc(p, q) such that b is outside Cpq,
and (b, r) is in E, and (b, r) has a nonempty intersection
with (p, q) (except possibly at their endpoints), a contradic-
tion. See Figure 6(a). If Algorithm Find-Path on input
(p, q, E1(= ∅)) executes the instruction “return false” in
line #15, then it is easy to see that all points of Scc(p, q)
(except points p and q) are outside Cpq, a contradiction.
See Figure 6(b). Thus, Algorithm Find-Path on input
(p, q, E1(= ∅)) returns the value true. �

Lemma 8 Assume that just before processing {p, q} ∈ L we
have a planar graph G = (S,E). Let Algorithm Find-Path
on input (p, q, E1(= ∅)) returns E1 6= ∅ and assume that
(a, b) ∈ E1, with |Pcc(p, a)| < |Pcc(p, b)|. Then, all points on
Pcc(a, b), except points a and b, are outside Cpq.

Proof. Assume (without loss of generality) that points p
and q are on a horizontal line and p is to the left of q. As-
sume for a contradiction that there is a point u 6= a, b on
Pcc(a, b) which is in (the interior or on the boundary of)
Cpq. If point u is considered by Algorithm Find-Path in
the condition of line #7, then the condition in line #7 of
Algorithm Find-Path does not hold. So, it is easy to see
that (a, b) is not added to E1 by the algorithm. So, point
u is not considered by Algorithm Find-Path in the condi-
tion of line #7. This happens only when there is an edge
(c, d) of E, with |Pcc(a, c)| < |Pcc(a, d)|, such that point u
is on Pcc(c, d). See Figure 6(c). Similarly, if one of points
c and d is in (the interior or on the boundary of) Cpq, then
(a, b) is not added to E1 by the algorithm. So, both points

55

1st Iranian Conference on Computational Geometry

c and d are also outside Cpq. Clearly, point u is also in Ccd.
Assume (without loss of of generality) that there is no edge
(r, s) ∈ E such that both points r and s are on Pcc(c, d), and
both points r and s are outside Cpq, and u is on Pcc(r, s) (or
Pc(r, s)). Since, (c, d) is not an edge on the boundary of the
convex hull of S, the first or second scenario occurs for (c, d).
In the following we consider these cases.

• The first scenario occurs for (c, d).

By assumption just before processing {p, q} we have a
planar graph. Thus, there is (respectively, it is possible
that we add some edges to E without crossing edges of
E, except possibly at their endpoints, to construct) a
convex path between c and d passing through u such
that Ccd contains the whole path. As an example, con-
sider path (c, u, d). So, by Lemma 6 Algorithm Find-
Path on input (c, d, E1(= ∅)) or (c, d, E2(= ∅)) returns
the value true. Therefore, edge (c, d) is not added to
E in line #7 of Algorithm Increasing-Chord, that is,
the first scenario cannot occur for (c, d), a contradic-
tion.

• The second scenario occurs for (c, d).

So, there are points c′ and d′ in S with |c′d′| ≤ |pq| such
that Algorithm Find-Path on input (c′, d′, E1(= ∅)) or
(c′, d′, E2(= ∅)) adds (c, d), where (c, d) lies entirely in
Cc′d′ , to E1 or E2, respectively, and then Algorithm
Increasing-Chord in line #9 or #11 adds E1 or E2,
respectively, to E. Since points S are in convex position
and both points c′ and d′ are outside slab(c, d), it is im-
possible to lie both points c′ and d′ on Pcc(c, d), that is,
both points c′ and d′ lie only on Pc(c, d). Assume that
Algorithm Find-Path runs on (c′, d′, E1(= ∅)) and we
have |Pc(c, c

′)| < |Pc(c, d
′)|. Since (c, d) lies completely

in Cc′d′ , point u is in Cc′d′ . Since by assumption just
before processing {p, q} we have a planar graph, it is
easy to see that points c′, c, u, d, and d′ in this or-
der are considered by Algorithm Find-Path on input
(c′, d′, E1). So, there is (respectively, it is possible to
add some edges to E without crossing edges of E, ex-
cept possibly at their endpoints, to construct) a convex
path between c′ and d′ passing through u laying entirely
in Cc′d′ . As an example, consider path (c′, c, u, d, d′).
Therefore, (c, d) is not added to E1 by Algorithm Find-
Path on input (c′, d′, E1(= ∅)), a contradiction.

Therefore, all points on Pcc(a, b), except points a and b, are
outside Cpq �

In the rest of this section we prove that at least one of the
conditions in lines #8 and #10 of Algorithm Increasing-
Chord holds, when the algorithm takes as input a finite set
of points in convex position in the plane. To do this we first
prove in the following lemma that it is impossible to hold
Property 3 for an edge of E1 and for an edge of E2 when the
algorithm processes a pair of L. Recall that lxy denotes the
line passing through x that is orthogonal to the line segment
(x, y) for distinct points x and y in the plane.

Lemma 9 Assume that just before processing {p, q} ∈ L we
have a planar graph G = (S,E). Assume that Algorithm
Find-Path on inputs (p, q, E1(= ∅)) and (q, p, E2(= ∅)) re-
turns E1 6= ∅ and E2 6= ∅, respectively. There are no pairs

p q

u1
Cpq

lqu1

p q

u1

v1

a1 b1

Cpq

p q

u2

v2

a2 b2

Cu2v2

Cpq

(a) (b) (c)

r

Cu1v1

lpr

αβ

s

Figure 7: For proof of Lemma 9.

(a1, b1) ∈ E1 and (a2, b2) ∈ E2 such that Property 3 holds
for both (a1, b1) and (a2, b2), when the algorithm takes as
input a finite set of points in convex position in the plane.

Proof. Let i = 1, 2. Recall that Property 3 for (ai, bi) is
as follows. There is a pair {ui, vi} ∈ L with ui ∈ Sc(p, q),
and vi ∈ Scc(p, q), and |pq| ≤ |uivi| such that both ai and bi
are outside Cuivi . Assume (without loss of generality) that
points p and q are on a horizontal line and p is to the left of q.
Assume Algorithm Find-Path runs on inputs (p, q, E1(= ∅))
and (q, p, E2(= ∅)) and then the algorithm returns E1 6= ∅
and E2 6= ∅.

Assume (for a contradiction) that Property 3 holds for
both (a1, b1) ∈ E1 and (a2, b2) ∈ E2 with |Pcc(p, a1)| <
|Pcc(p, b1)| and |Pc(p, a2)| < |Pc(p, b2)|. See Figure 7(a),(b).
Since both a1 and b1 are outside Cu1v1 and on Pcc(p, q), point
v1 is on Pcc(a1, b1). See Figure 7(a). Similarly, point u2 is
on Pc(a2, b2). See Figure 7(b). Clearly, we have v1 6= a1,
v1 6= b1, u2 6= a2, and u2 6= b2. So, by Lemma 8, points v1
and u2 are outside Cpq and ,therefore, points u1 and v2 are
inside Cpq.

It is clear that points p and q are outside Cu1v1 and Cu2v2 .
It follows that v2 6= p and v2 6= q. Therefore, it is possible
that v2 is a point on (i) Pcc(p, a1), except for point p, or (ii)
Pcc(a1, b1), except for points a1 and b1, or (iii) Pcc(b1, q),
except for point q. In the rest of the proof we consider these
cases.

• Assume that v2 6= p is a point on Pcc(p, a1).

Clearly, point u1 is above or on (p, q). Let u1 be an
arbitrary point above or on (p, q) and inside Cpq. Let r
be the point on lqu1 and below (p, q) such that |u1r| =
|pq|. See Figure 7(c). Since point q is outside Cu1v1 , it
is easy to see that point v1 is to the left of (u1, r) and to
the left of lqu1 and we have |u1v1| ≥ |pq|. Let point v1
is to the left of (u1, r) and to the left of lqu1 such that
|u1v1| ≥ |pq|. By assumption point v2 is on Pcc(p, a1).
So, point v2 is below the line passing through points p
and r. Let point v2 be below the line passing through
points p and r. Since point p is outside Cu2v2 , point u2

is below lpr. It is easy to see that there is an intersection
point between lpr and the line passing through points
u1 and q. Let s be the intersection point between lpr
and the line passing through points u1 and q. Since
the algorithm takes as input a set of points in convex
position in the plane, point u2 is below the line passing
through points q and u1. It follows that point u2 is
below line segments (p, s) and (s, q). Define α := ∠sqp

56

ICCG 2018, Tehran, February 27, 2018

and β := ∠spq. Since point u1 is inside Cpq, we have
0 ≤ α < π/2.

Let α be a fixed angle in interval [0, π/2). It is easy
to see that when point u1 is far from point q, then β
increases. So, the maximum angle of β happens when
point u1 is very close to the boundary of Cpq. If we
place point u1 on the boundary of Cpq, then point r
is also on the boundary of Cpq and, therefore, we have
α+ β = π/2. So, when point u1 is inside Cpq, then we
have α+β < π/2. Since point u2 is below line segments
(p, s) and (s, q), it follows that point u2 is inside Cpq,
contradicting that point u2 is outside Cpq.

• Assume that v2 6= a1, b1 is a point on Pcc(a1, b1).

So, by Lemma 8, point v2 is outside Cpq, contradicting
that point v2 is inside Cpq.

• Assume that v2 6= q is a point on Pcc(b1, q).

Similar to the first case (i.e., point v2 6= p is on
Pcc(p, a1)) it follows that point u2 is inside Cpq, a con-
tradiction.

Hence, It is impossible to hold Property 3 for both (a1, b1)
and (a2, b2). �

As seen from Algorithm 3.1 (i.e., Algorithm Increasing-
Chord), if the condition in line #6 does not hold, then
B1 = true or B2 = true. If exactly one of variables B1 and
B2 has the value false, then the condition in line #10 or #8,
respectively, holds, otherwise B1 = B2 = true. By Lemma
9, it is impossible to hold Property 3 for an edge of E1 and
for an edge of E2 when the algorithm processes one pair of
L. So, we obtain the following result.

Corollary 10 Assume that just before processing {p, q} ∈ L
we have a planar graph G = (S,E). If Algorithm Find-Path
on at least one of inputs (p, q, E1(= ∅)) and (q, p, E2(= ∅))
returns the value true, then the condition in line #8 or #10
of Algorithm Increasing-Chord holds.

5 Properties of edges added by the first scenario

Recall that G = (S,E) is the output graph of Algorithm
Increasing-Chord on S, where S is a finite set of points in
convex position in the plane. In this section we state some
properties for edges of G which the first scenario adds these
edges to E, that is, these edges are added to E in line #7
of Algorithm Increasing-Chord. These properties help us
to prove that G is a planar graph.

Lemma 11 Let (p, q) be in E, where {p, q} ∈ L. Assume
that just before processing {p, q} we have a planar graph
and there is (a, b) ∈ E (with |ab| ≤ |pq|) such that has a
nonempty intersection with (p, q), except possibly at their
endpoints. If the first scenario occurs for (p, q), then at least
one of points a and b is in (the interior or on the boundary
of) Cpq.

Proof. Suppose that the first scenario occurs for (p, q). As-
sume (without loss of generality) that points p and q are on
a horizontal line and p is to the left of q. Suppose for a con-
tradiction that (a, b) is an edge of E with |ab| ≤ |pq| such
that has a nonempty intersection with (p, q), except possibly

p q

a

b
Cpq

Cab
p q

a

b

CpqCab
c

d

(a) (b)

p q

a

b

Cpq

u

v

(c)

Cuv

u

v

Cuv

Figure 8: For proof of Lemma 11.

at their endpoints, and both a and b are outside Cpq. So, at
least one of points p and q is in (the interior or on the bound-
ary of) Cab. Assume without loss of generality that p is in
Cab and p is on Pcc(a, b). See Figure 8. Suppose that (a, b)
has the leftmost intersection point between all edges of E
that have a nonempty intersection with (p, q), except possi-
bly at their endpoints, and both theirs endpoints are outside
Cpq. Clearly, edge (a, b) is not an edge on the boundary of
the convex hull of S. So, the first or second scenario occurs
for (a, b). In the following we consider these cases.

• The first scenario occurs for (a, b).

Suppose that there is no edge of E having a nonempty
intersection with (p, q) to the left of the intersection
point between (p, q) and (a, b), except possibly at their
endpoints. By assumption just before processing {p, q}
we have a planar graph. Thus, there is (respectively,
it is possible that we add some edges to E without
crossing edges of E, except possibly at their endpoints,
to construct) a convex path between a and b passing
through p such that Cab contains the whole path. As an
example, consider path (a, p, b). So, by Lemma 6 Algo-
rithm Find-Path on input (a, b, E1(= ∅)) or (a, b, E2(=
∅)) returns the value true. Therefore, edge (a, b) is
not added to E in line #7 of Algorithm Increasing-
Chord, that is, the first scenario cannot occur for (a, b),
a contradiction. See Figure 8(a). Otherwise, suppose
that edge (c, d) ∈ E (with |cd| ≤ |pq|) has a nonempty
intersection with (p, q) to the left of the intersection
point between (p, q) and (a, b) such that there is no in-
tersection point between these two intersections points
on (p, q). Since (a, b) has the leftmost intersection point
between all edges of E that have a nonempty intersec-
tion with (p, q) (except possibly at their endpoints) and
both theirs endpoints are outside Cpq, at least one of
points c and d is in Cpq. Assume (without loss of gen-
erality) that point c is in Cpq. Since just before adding
(p, q) to E we have a planar graph, therefore, point
c is also in Cab. See Figure 8(b). So, there is (re-
spectively, it is possible that we add some edges to E
without crossing edges of E, except possibly at their
endpoints, to construct) a convex path between a and
b passing through c such that Cab contains the whole
path. As an example, consider path (a, c, b). It follows
from Lemma 6 that Algorithm Find-Path on input
(a, b, E1(= ∅)) or (a, b, E2(= ∅)) returns the value true.
Therefore, the first scenario cannot occur for (a, b), a
contradiction.

• The second scenario occurs for (a, b).

So, there are points u and v in S with |uv| ≤ |pq| such

57

1st Iranian Conference on Computational Geometry

that Algorithm Find-Path on input (u, v, E1(= ∅)) or
(v, u, E2(= ∅)) adds (a, b), where (a, b) lies entirely in
Cuv, to E1 or E2, respectively, and then Algorithm
Increasing-Chord in line #9 or #11 adds E1 or E2,
respectively, to E. (Clearly, Algorithm Find-Path on
at least one of inputs (u, v, E1(= ∅)) and (v, u,E2(= ∅))
returns the value true.) There are two possible cases
for u and v.

Case 1: Both u and v are on Pc(a, b) (with
|Pc(a, u)| < |Pc(a, v)|), and Algorithm Find-Path on
input (u, v, E1(= ∅)) or (u, v, E2(= ∅)) returns the value
true, and (a, b) is in E1 or E2, respectively. See Figure
8(a).

Case 2: Both u and v are on Pcc(a, b) (with
|Pcc(a, u)| < |Pcc(a, v)|), and Algorithm Find-Path on
input (v, u,E1(= ∅)) or (v, u,E2(= ∅)) returns the value
true, and (a, b) is in E1 or E2, respectively. See Figure
8(c).

We first consider Case 1. Since p ∈ Cab, and |uv| ≤
|pq|, and (a, b) lies entirely in (the interior or on the
boundary of) Cuv, and both points a and b are outside
Cpq, it is easy to see that p is in Cuv. See Figure 8(a).
Clearly, p 6= a and p 6= b. But, by Lemma 8, point p is
outside Cuv, a contradiction.

We now consider Case 2. Assume that Algorithm Find-
Path runs on inputs (v, u, E1(= ∅)) and (u, v, E2(= ∅)).
So, (a, b) is in E1. Clearly, point p is in Cuv. It is
easy to see (similar to the previous case of the proof,
i.e., the first scenario occurs for (a, b)) that there is
(respectively, it is possible to add some edges to E
without crossing edges of E, except possibly at their
endpoints, to construct) a convex path between u and
v in G[Scc(u, v)] laying entirely in Cuv. See Figure
8(c). By Lemma 6, Algorithm Find-Path on input
(u, v, E2(= ∅)) returns the value true. Hence, Algo-
rithm Find-Path on both inputs (v, u, E1(= ∅)) and
(u, v, E2(= ∅)) returns the value true. Since Property 3
holds for (a, b) ∈ E1, by Lemma 9, Property 3 does not
holds for any edge of E2. This, together with that Al-
gorithm Find-Path on both inputs (v, u,E1(= ∅)) and
(u, v, E2(= ∅)) returns the value true, implies that E2

is added to E in line #11 of Algorithm Increasing-
Chord. Since (a, b) ∈ E1, edge (a, b) is not added to
E, a contradiction.

Therefore, at least one of points a and b is in Cpq. �

Lemma 12 Let (p, q) be in E, where {p, q} ∈ L. Assume
that just before processing {p, q} we have a planar graph and
there is (a, b) ∈ E with |ab| ≤ |pq| such that has a nonempty
intersection with (p, q), except possibly at their endpoints. If
Cab contains p or q, then it is impossible to occur the first
scenario for (a, b).

Proof. Assume for a contradiction that the first scenario
occurs for (a, b). So, by Lemma 11, there is no edge of E
(with length at most |pq|) which has a nonempty intersec-
tion with (p, q) (except possibly at their endpoints) and that
both its endpoints are outside Cpq. Assume (without loss of
generality) that points p and q are on a horizontal line and p
is to the left of q. Suppose that (a, b) ∈ E (with |ab| ≤ |pq|)

p q

a

b

Cpq

Cab

p

a

c

b d

q

Cpq

(a) (b)

Figure 9: For proof of Lemmas 12 and 13 from left to
right, respectively.

has the leftmost intersection point between all edges of E
that have a nonempty intersection with (p, q), except possi-
bly at their endpoints. Assume (without loss of generality)
that a is in Cpq, and by assumption Cab contains p, and
point p is on Pcc(a, b). See Figure 9(a). Also, by assump-
tion just before processing {p, q} we have a planar graph.
Thus, there is (respectively, it is possible that we add some
edges to E without crossing edges of E, except possibly at
their endpoints, to construct) a convex path between a and b
passing through p such that Cab contains the whole path. As
an example, consider path (a, p, b). So, by Lemma 6 Algo-
rithm Find-Path on input (a, b, E1(= ∅)) or (a, b, E2(= ∅))
returns the value true. Therefore, edge (a, b) is not added
to E in line #7 of Algorithm Increasing-Chord, that is,
the first scenario cannot occur for (a, b). �

Lemma 13 Assume that just before adding (p, q) to E,
where {p, q} ∈ L, we have a planar graph and there are at
least two edges (a, b) and (c, d) of E (with lengths at most
|pq|) such that points a and c are on Pc(p, q), and points b
and d are on Pcc(p, q), and (a, b) has a nonempty intersec-
tion with (p, q), and (c, d) has a nonempty intersection with
(p, q), except possibly at their endpoints. If a, d ∈ Cpq and
b, c /∈ Cpq, then the first scenario cannot occur for (p, q).

Proof. Assume without loss of generality that p and q are
on a horizontal line and p is to the left of q and that the
intersection point between (p, q) and (a, b) is to the left of
the intersection point between (p, q) and (c, d). See Fig-
ure 9(b). Clearly, points a and d are above and below (p, q),
respectively. Assume (for a contradiction) that the first sce-
nario occurs for (p, q). Clearly, edges (a, b) and (c, d) are
not edges on the boundary of the convex hull of S. So, the
first or second scenario occurs for every one of edges (a, b)
and (c, d). In the following before we complete the proof, we
explain what happens when the second scenario occurs for
(a, b) (respectively, (c, d)).

Suppose that the second scenario occurs for (a, b) (respec-
tively, (c, d)). So, there is {a′, b′} ∈ L with |a′b′| ≤ |pq|
(respectively, {c′, d′} ∈ L with |c′d′| ≤ |pq|) such that when
the algorithm processes {a′, b′} (respectively, {c′, d′}), then
the algorithm adds (a, b), where (a, b) lies entirely in Ca′b′

(respectively, (c, d), where (c, d) lies entirely in Cc′d′), to
E. Clearly, both a′ and b′ (respectively, both c′ and d′) lie
on Pc(a, b) or Pcc(a, b) (respectively, Pc(c, d) or Pcc(c, d)).
Since points of S are in convex position, both a′ and b′ (re-
spectively, both c′ and d′) are not in (the interior or on the
boundary of) slab(a, b) (respectively, slab(c, d)). There are

58

ICCG 2018, Tehran, February 27, 2018

p q

a

d

b

c

slabCpq
(a, ap⊥)

slabCpq
(d, dq⊥)

p
qa

b
slabCpq

(a, ap⊥)

d

c slab(c, d)

(a) (b)

a

p

b

q

c

d

slab(c, d)

slab(a, b)

(c)

α

Figure 10: For proof of Lemma 13.

the following cases to consider. See Figure 10. Recall that
by assumption both a and c are in (the interior or on the
boundary of) Cpq and both b and c are outside Cpq.

• Suppose that the first scenario occurs for both (a, b)
and (c, d).

Assume that a is an arbitrary point in (the interior or on
the boundary of) Cpq and above (p, q). By Lemma 12,
both Cab and Ccd contain none of points p and q. So, it
is easy to see that b is below slabCpq (a, ap⊥), and, there-
fore, d is also below slabCpq (a, ap⊥). Clearly, point q
is on the boundary of slabCpq (a, ap⊥). It follows that
c is above slabCpq (d, dq⊥), and, therefore, c is above
slabCpq (a, ap⊥). Hence, a is below the line passing
through points p and c, contradicting the fact that
points of S are in convex position. See Figure 10(a).

• Assume (without loss of generality) that the first sce-
nario occurs for (a, b) and the second scenario occurs
for (c, d).

Assume that a is an arbitrary point in Cpq and
above (p, q). By Lemma 12, Cab contains none of points
p and q. Hence, b is below slabCpq (a, ap⊥), and, there-
fore, d is also below slabCpq (a, ap⊥). Clearly, point q
is on the boundary of slabCpq (a, ap⊥). There are two
possibilities for c′ and d′. Both c′ and d′ are either on
Pc(c, d) or on Pcc(c, d). Assume without loss of general-
ity that c′ is above slab(c, d) and, therefore, d′ is below
slab(c, d). Since points of S are in convex position,
point c is below or on the line passing through points a
and p, that is, point c is in (the interior or on the bound-
ary of) slabCpq (a, ap⊥). Clearly, in the former case
point c′ is below or on the line passing through points
p and c, and, therefore, point c′ is also in (the interior
or on the boundary of) slabCpq (a, ap⊥). Let α be the

angle between rays −→pa and
−→
cd. It is clear that α > π/2.

Since points b and d are below slabCpq (a, ap⊥), and
point d′ is below slab(c, d), and point d′ is on Pc(c, d),
it follows that point d′ is below the line passing through
points b and d, contradicting the fact that points of S
are in convex position. Clearly, q 6= c and q 6= d. In
the latter case, by Lemma 8, point q is outside Ccd. So,
similar to the case which the first scenario occurs for
both (a, b) and (c, d) (i.e., the first case) this contra-
dicts the fact that points of S are in convex position.
See Figure 10(b).

• Suppose that the second scenario occurs for both (a, b)
and (c, d).

It suffices to consider the case that both a′ and b′ are
on Pcc(a, b) and both c′ and d′ are on Pc(c, d). Assume

that a is an arbitrary point in Cpq and above (p, q).
Assume without loss of generality that a′ is above
slab(a, b) and, therefore, b′ is below slab(a, b). Since
points of S are in convex position, both points c and
d are inside slab(a, b). Assume without loss of general-
ity that c′ is above slab(c, d) and, therefore, d′ is below
slab(c, d). Clearly, point c′ is below or on the line pass-
ing through points a and c and, therefore, point c′ is

inside slab(a, b). Let α be the angle between rays
−→
ab and−→

cd. Clearly, α > 0. Since point d′ is below slab(c, d)
and point d′ is on Pc(c, d), it follows that point d′ is
below the line passing through points b and d, contra-
dicting the fact that points of S are in convex position.
See Figure 10(c).

Therefore, all the above cases never occur. This completes
the proof. �

6 An increasing-chord planar graph returned by Al-
gorithm 3.1

In this section we prove that the output of Algorithm
Increasing-Chord on input S, where S is a finite set of
points in convex position in the plane, is an increasing-chord
planar graph. To do this, we prove by induction on the rank
of L that just after processing each pair {p, q} ∈ L by Algo-
rithm Increasing-Chord there is a convex path between
p and q in the resulting graph such that Cpq contains the
whole path and that the resulting graph is planar.

Lemma 14 The output of Algorithm 3.1 on input S is a
planar graph and there is a convex path in the output graph
between any two distinct points p, q ∈ S lying entirely in
Cpq, when S is a finite set of points in convex position in
the plane.

Proof. Clearly, any edge on the boundary of CH(S) does
not intersect the edge between any two points of S, except
possibly at their endpoints, and for all edges on the boundary
of CH(S) the claim in the lemma holds. For distinct points
p, q ∈ S, where (p, q) is not an edge on the boundary of
CH(S), we prove the claim in the lemma by induction on
the rank of {p, q} in L, where L is the list of the

(
n
2

)
sorted

pairs of distinct points of S in non-decreasing order of their
distances, except pairs that are endpoints of edges on the
boundary of the convex hull of S.

Base case: Let {r, s} be the first pair in L. If the first
scenario occurs for (r, s), then clearly the resulting graph
is planar and there is a convex path in the graph between
points r and s lying entirely in Crs. Otherwise, Algo-
rithm Find-Path on at least one of inputs (r, s, E1(= ∅))
and (s, r, E2(= ∅)) (in line #5) returns the value true. By
Corollary 10 at least one of the conditions in lines #8 and
#10 of Algorithm Increasing-Chord holds. So, Algorithm
Increasing-Chord (in line #9 or #11) adds E1 or E2, re-
spectively, to E. By Lemma 6 the resulting graph is planar
and there is a convex path between r and s in the graph
such that Crs contains the whole path.

Induction hypothesis: Assume that just before Algo-
rithm Increasing-Chord processes {p, q}, where |rs| ≤
|pq|, the graph G = (S,E) is planar and there is a convex

59

1st Iranian Conference on Computational Geometry

qp

r1

s1

r2 r3

s2 s3
Cpq

Figure 11: For proof of Lemma 14.

path between points of any pair {a, b} ∈ L with |ab| ≤ |pq|
such that Cab contains the whole path.

The inductive step: Suppose that the algorithm pro-
cesses {p, q}. There are two possible cases to consider, de-
pending on whether or not (p, q) is added to E in line #7 of
Algorithm Increasing-Chord.
Case 1: Edge (p, q) is not added to E in line #7 of Algo-
rithm Increasing-Chord.

Similar to the base case the resulting graph is planar and
there is a convex path between p and q in the graph such
that Cpq contains the whole path.
Case 2: Edge (p, q) is added to E in line #7 of Algo-
rithm Increasing-Chord, that is, the first scenario occurs
for (p, q). Clearly, there is a convex path between p and q in
the graph lying entirely in Cpq. We claim that any edge of
E has an empty intersection with (p, q), except possibly at
their endpoints.

Assume that (r1, s1), (r2, s2), . . . , (rk, sk) ∈ E, where k ≥
1, are all edges of E that have a nonempty intersection with
(p, q), except possibly at their endpoints. Assume without
loss of generality that each ri, for 1 ≤ i ≤ k, is on Pc(p, q)
with |Pc(p, r1)| ≤ |Pc(p, r2)| ≤ . . . ≤ |Pc(p, rk)|. (Since just
before processing {p, q} we have a planar graph, each si is on
Pcc(p, q) with |Pcc(p, s1)| ≤ |Pcc(p, s2)| ≤ . . . ≤ |Pcc(p, sk)|.)
See Figure 11.

By Lemma 11, at least one of points ri and si is in (the
interior or on the boundary of) Cpq, for 1 ≤ i ≤ k. We
need only to consider two cases: (i) for all 1 ≤ i ≤ k, every
ri is in Cpq or every si is in Cpq, see Figure 11, and (ii)
there are edges (rj , sj) and (rl, sl) with 1 ≤ j, l ≤ k such
that rj , sl ∈ Cpq and sj , rl /∈ Cpq, see Figure 9(b). (Assume
(rj , sj) = (a, b) and (rj , sj) = (c, d).) In the former case as-
sume without loss of generality that all points s1, s2, . . . , sk
are in Cpq. By assumption we have a planar graph just be-
fore adding (p, q) to E. So, there is (respectively, it is possi-
ble that we add some edges to E without crossing edges of
E, except possibly at their endpoints, to construct) a convex
path between p and q passing through points s1, s2, . . . , sk
such that Cpq contains the whole path. As an example, con-
sider path (p, s1, s2, . . . , sk, q). It follows from Lemma 6 that
Algorithm Find-Path on input (p, q, E1(= ∅)) returns the
value true, that is, Algorithm Increasing-Chord (in line
#7) does not add (p, q) to E. So, the first scenario cannot
occur for (p, q), a contradiction. By Lemma 13 the latter
case never occurs. Hence, the resulting graph is planar, and
we are done. �

Clearly, the running time of the algorithm of this paper (i.e.,
Algorithms Increasing-Chord and Find-Path) is polyno-

mial in |S|. So, by Lemmas 2 and 14 we get the following
result.

Theorem 15 There is a polynomial-time algorithm that
computes an increasing-chord planar graph for a finite set of
points in convex position in the plane with no Steiner point
and with the geometric dilation less than π/2.

7 Conclusions

Let S be a finite set of points in convex position in the
plane. We studied the problem of computing an increasing-
chord planar graph for S. We proposed a polynomial-time
algorithm that computes an increasing-chord planar graph
spanning S with the geometric dilation less than π/2 and
with no Steiner point. A direct implementation of the al-
gorithm has running time O(|S|5). A natural problem is to
improve the running time of the algorithm. Also, we guess
it is possible to extend the algorithm to an algorithm that
computes an increasing-chord planar graph for any point set
in the plane with no Steiner point.

References

[1] S. Alamdari, T. M. Chan, E. Grant, A. Lubiw, and
V. Pathak. Self-approaching graphs. In Interna-
tional Symposium on Graph Drawing, pages 260–271.
Springer, 2012.

[2] M. Amani, A. Biniaz, P. Bose, J. De Carufel, A. Ma-
heshwari, and M. Smid. A plane 1.88-spanner for points
in convex position. Journal of Computational Geome-
try, 7(1):520–539, 2016.

[3] P. Angelini, F. Frati, and L. Grilli. An algorithm to
construct greedy drawings of triangulations. Journal of
Graph Algorithms and Applications, 14(1):19–51, 2010.

[4] P. Bose, R. Fagerberg, A. van Renssen, and S. Ver-
donschot. Competitive routing in the half-θ 6-graph.
In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 1319–1328.
Society for Industrial and Applied Mathematics, 2012.

[5] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. J. Graph Al-
gorithms Appl., 19(2):761–778, 2015.

[6] M. T. Goodrich and D. Strash. Succinct greedy geomet-
ric routing in the euclidean plane. In International Sym-
posium on Algorithms and Computation, pages 781–
791. Springer, 2009.

[7] X. He and H. Zhang. On succinct convex greedy draw-
ing of 3-connected plane graphs. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 1477–1486. Society for Indus-
trial and Applied Mathematics, 2011.

[8] X. He and H. Zhang. On succinct greedy drawings of
plane triangulations and 3-connected plane graphs. Al-
gorithmica, 68(2):531–544, 2014.

[9] C. Icking, R. Klein, and E. Langetepe. Self-approaching
curves. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 125, pages 441–453. Cam-
bridge Univ Press, 1999.

60

ICCG 2018, Tehran, February 27, 2018

[10] T. Leighton and A. Moitra. Some results on greedy
embeddings in metric spaces. Discrete & Computational
Geometry, 44(3):686–705, 2010.

[11] K. Mastakas and A. Symvonis. On the construction of
increasing-chord graphs on convex point sets. In Infor-
mation, Intelligence, Systems and Applications (IISA),
2015 6th International Conference on, pages 1–6. IEEE,
2015.

[12] M. Nöllenburg, R. Prutkin, and I. Rutter. On
self-approaching and increasing-chord drawings of 3-
connected planar graphs. Journal of Computational
Geometry, 7(1):47–69, 2016.

[13] C. H. Papadimitriou and D. Ratajczak. On a conjec-
ture related to geometric routing. Theoretical Computer
Science, 344(1):3–14, 2005.

[14] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,
and I. Stoica. Geographic routing without location in-
formation. In Proceedings of the 9th annual interna-
tional conference on Mobile computing and networking,
pages 96–108. ACM, 2003.

[15] G. Rote. Curves with increasing chords. In Mathemati-
cal Proceedings of the Cambridge Philosophical Society,
volume 115, pages 1–12. Cambridge Univ Press, 1994.

61

62

ICCG 2018, Tehran, February 27, 2018

Kinetic Nearest Neighbor Search in Black-Box Model

Bahram Sadeghi Bigham∗ Maryam Nezami † Marziyeh Eskandari‡

Abstract

Proximity problems is a class of important problems
which involve estimation of distances between geomet-
ric objects. The nearest neighbor search which is a sub-
set of proximity problems, arises in numerous fields of
applications, including Pattern Recognition, Statistical
classification, Computer vision and etc. In this study, a
nearest neighbor search is presented to move points in
the plane, while query point is static.

The proposed method works in the black-box KDS
model, in which the points location received at regu-
lar time steps while at the same time, an upper bound
dmax is known on the maximum displacement of any
point at each time step. In this paper, a new algorithm
is presented for kinetic nearest neighbor search problem
in the black-box model, under assumptions on the dis-
tribution of the moving point set P. It has been shown
how the kinetic nearest neighbor will be updated at each
time step in O(k∆k log n) amortized time, where ∆k is
the k-spread of a point set P .

Key words: Computational Geometry, Black Box
Model, Kinetic, Nearest Neighbor.

1 Introduction

In recent years, there has been a growing amount of
research dealing with moving, or kinetic, data. Algo-
rithms dealing with objects in motion traditionally dis-
cretized time and recompute the structure of interest at
every time step from scratch. This can be wasteful, es-
pecially if time steps are small. Since objects will move
more slightly, and the structure may not change at all.
Ideally an object receives attention if and only if, its new
location triggers an actual change in the structure. A
basic assumption in the Kinetic Data Structure (KDS),
which is introduced by Basch et al. [1], is that the ob-
ject trajectories are known. This assumption severely
limits the applications of KDS framework.

∗Corresponding author: Department of Computer Science and
Information Technology, Institute for Advanced Studies in Ba-
sic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, Iran.
b sadeghi b@iasbs.ac.ir
†Department of Computer Science and Information Technol-

ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Prof. Yousef Sobouti Blvd., Zanjan, Iran. mnezami@gmail.com
‡Department of Computer Science and Information Technol-

ogy, Alzahra University, Tehran Province, Tehran, Vanak Village
Street, eskandari@alzahra.ac.ir

Sometimes in an online manner, the object locations
are available only at time steps. So when future
tracking moving object is not available, the basic
assumption in the KDS model is not always valid (refer
to surveys by Guibas for more information about KDSs
[5, 6]). Certainly, there is a need for a hybrid model,
which combines ideas from the KDS model with a
traditional time-slicing approach. De Berge et al. [2]
introduced kinetic data structures in black-box model
with fewer restrictions, instead of knowing knowledge
of the trajectories. They only assume that they know
upper bounds on objects’ speed and can compute their
positions at regular time steps. They develop KDSs
in the black-box model that consider under certain
assumptions on the trajectories which is proved to be
more efficient than recomputing the structure from
scratch. Additionally, in recent years, some problems
(e.g., convex hull, 2-center) have been studied in black
box model [2, 3].

Proximity problems is a class of important problems
in computational geometry which involve estimation
of distances between geometric objects. The nearest
neighbor search problem arises in numerous fields of
applications, including Pattern Recognition, Statistical
classification, Computer vision and etc.

In this paper, a black-box KDSs has been studied to
find the nearest neighbor in a set P of n points moving
to a static query point q in the plane. There is a need
to make assumptions on the point movements and time
steps to obtain proved efficient solutions. Time steps
should be small enough to have coherency between the
objects’ positions in consecutive time steps. Otherwise,
there is no better way than recomputing the structure
from scratch. Also, it has been assumed that in most
of our results that P is fairly distributed at each time
step.
In the following, firstly, the black-box model which was
introduced by de Berg et al. [2] and the concept of
k-spread will be described. Furthermore, an algorithm
that updates the nearest neighbor search at each time
step in O(k∆k log n) amortized time, where ∆k is the
k-spread of a point set P will be presented.

The Back-Box model: Let P be a set of moving
points in plane. In black-box model, the exact motions
of the points are unknown and a new location p(t) for
each point p ∈ P is available at regular time steps t =

63

1st Iranian Conference on Computational Geometry

t1, t2, t3, The goal is to update the nearest neighbor
to q at each time step.

For any point p ∈ P , it is assumed a maximum dis-
placement dmax that indicates how far the point can
move between two consecutive time steps. For a (static)
set S of points and a point s ∈ S, let NNk(s, S) denote
the k-th nearest neighbor of s in S\{s}. Let dist(p1, p2)
denotes the Euclidean distance between two points p1
and p2, and

mindistk(S) = mins∈Sdist(s,NNk(s.S)).

At any time step t, dmax is assumed the most
mindistk(P (t)).
Displacement Assumption: There is a maximum
displacement dmax, such that at any time step ti:

• dmax ≤ mindistk(P (ti)), and

• dist(p(ti), p(ti+1)) ≤ dmax for each point p ∈ P .

This means that there are no more than k points within
a distance dmax of each other.

The k-spread of a point set: In this model, a
conception called k-spread is utilized, as introduced
by Erickson [4] for distribution of a set of point. The
k-spread, ∆k of a set P of static points is defined as:

∆k(P) =
diam(P)

mindistk(P)

in which diam(P) is diameter of P .

Lemma 1 Let P be a set of points and R be a region
in the plane such that diam(R) < mindistk(P), then R
contains at most k points of P [2].

2 Maintaining the nearest neighbor search

Let P be a set of n moving points in the plane and q
be static query point that adheres to the Displacement
Assumption with parameters k and dmax. The goal is to
compute the nearest neighbor to q from moving points P
at regular time steps t = t1, t2, t3, · · · . Let NNS(P (t))
denotes the nearest neighbor in P (t):= {p(t) : p ∈ P} to
q. NNS(t) is used as a shorthand for NNS(P (t)).
The maintenance of some structures always depends on
all the points and the others are defined by only a sub-
set of the points. The nearest neighbor search is latter
type; so as previously mentioned, the algorithm does
not need to ask for all new positions at every time step.
It may ignore some points, if the new locations of these
points cannot change the structure. Thus, an efficient
algorithm is potentially exist. A subset Q(t) ⊆ P (t) is
introduced in this paper, so thatNNS(Q(t))=NNS(t).
A point in P (t) is called active if it is part of Q(t) at
time step t; and the points that are not in Q(t) are

called inactive. NNS(t) can be computed using only
points from Q. If Q is much smaller than P , this may
be much faster than computing NNS(t) directly. In a
kinetic setting, knowledge from previous time steps can
be used to find Q quickly. The coherency between struc-
tures at successive time steps are to find Q quickly at
each time step. To this end, a bound can be computed
for each point, on the number of time steps that must
pass before it can become part of Q.
Let P be a set of moving points and t be a time step.
A function τNNS(p, t) is called an inactivity function if
the point p is inactive at any time ti with t < ti ≤
t+ τNNS(p, t).
For the nearest neighbor search problem, it is defined

τNNS(p, t) = bdist(p, q)− dist(q,NNS(t))

2dmax
c

where dist(p1, p2) denotes the minimum Euclidean dis-
tance p1 to p2. The following lemma shows that this is
a valid inactivity function.

Lemma 2 For any point p ∈ P and any time step t,
p(ti) is inactive at any time step ti with t < ti ≤ t +
τNNS(p, t).

Proof. In the black-box model, each point p can move
at most dmax per time step. This includes the near-
est neighbor of q, therefore the distance between a
point p and q can decrease by at most 2dmax per
time step. Also, the distance between NNS(t) and q
can increase by at most 2dmax in each time step; as
dist(p, q) − dist(q,NNS(t)) can decrease by at most
2dmax per time step. As a result, p cannot be active
point at any time step ti with t < ti ≤ t+τNNS(p, t). �

For each point p ∈ P , a time stamp Tp maintained that
indicates the first time in the future at which p can be
active. At the time step t = Tp, we say that the time
stamp of p has expired.
The general algorithm thus works as follows: NNS(t0)
initially is computed by scratch. Then each point
p ∈ P enter in a queue with the time stamp Tp =
t0+τNNS(p, t)+1 as its key. At each time step t, the set
Q(t) of all points with key t retrieved from the queue.
Then NNS(Q(t)) is computed and, hence, NNS(t). Fi-
nally each point p ∈ Q(t) reinserted into the queue with
its new time stamp Tp = t+ τNNS(p, t) + 1.
To implement this algorithm, an array A is used where
A[ti] contains the points which time stamps expire at
time ti. To restrict the amount of storage, an array
A[0 · · ·n − 1] is used with n entries, where A[i] stores
all points with time stamp i = Tp mod n. The time
stamps are bounded to be at most n steps. This ap-
proach enables us to add and remove points from the
queue in O(1) time per point as opposed to O(log n)
with a standard priority queue structure. The proposed

64

ICCG 2018, Tehran, February 27, 2018

approach is made explicit in Algorithm 1. Note that the
algorithm needs to know only dmax to work properly
and it does not need to know bounds on the k-spread.

Algorithm 1 UPDATENNS

Q(t)← set of points stored in A[t]
Compute NNS(Q(t)) and set NNS(P (t)) ←
NNS(Q(t))
for each p ∈ Q(t) do

compute τNNS(p, t)
Add p to A[t+ min(τNNS(p, t) + 1, n) mod n]

end for
t← (t+ 1) mod n

It is worth mentioning that how can computeNNS(t)
and τNNS . Computing NNS(Q(t)) can be done by
nearest neighbor search algorithm at static mode in
|Q(t)| time and clearly computing τNNS is done in O(1)
time, so the time to update algorithm 1 at time step t,
depends on the size of Q(t). In the worst case, all points
may expire in a single time step, but when the k-spread
of P is low, it is possible to show that on average only
a small number of points expire.

Lemma 3 At each time step t, UPDATENNS up-
dates the nearest neighbor in P to q in O(|Q(t)|) time.

The number of points that can expire in a single time
step -the size of Q(t)- can be bounded by amortized
analysis using γNNS(P) as a parameter, which will de-
fine a bound on the maximum number of points p ∈ P
at any time t which τNNS has the same value.

Lemma 4 The number of points p ∈ P for which
τNNS(p, t) = i is bounded by γNNS(P) = O(k∆k) for
any 0 ≤ i ≤ n.

Proof. Let Gi denotes the set of points p ∈ P for which
τNNS(p, t) = i, according to the definition τNNS(p, t)
for any point p ∈ P can conclude the following state-
ment:

i ·2dmax ≤ dist(p, q)−dist(q,NNS(t)) < (i+1) ·2dmax

So, the number of points which distance
dist(p, q) − dist(q,NNS(t)) is between i · 2dmax

and (i + 1) · 2dmax should be bounded. The points in
Gi reside in area C that which are centered at the same
point q, but differ in radius length 2dmax as illustrated
in Figure 1. Now consider overlaying this area with an
axis-aligned grid G of which each cell has edge length
mindistk(P). From Lemma 1, it is clear that each cell
contains O(k) points. This region C can be subdivided
into four axis aligned rectangles Rn, Rw, Rs and Re

with edge lengths at most 2dmax and dam(P) (see
Figure 2). Firstly, the maximum number of cells in
Rn are computed. From the definition of the k-spread

and the Displacement Assumption, it is obvious that
each rectangle of Rn intersects at most O(∆k) cells of
this grid and similar argument can be made for Rw, Rs

and Re and so, it follows that R = Rn ∪ Rs ∪ Re ∪ Rw

contains O(∆k) cells of this grid. Then, according
the areas defined in Figure 3, should be fixed out the
maximum number of cells in C is less than R.

Let NC denotes the maximum number of cells of C
(and similarly for other regions). The areas of rne, rse,
rnw and rsw are pink regions, cne, cse, cnw and csw are
yellow regions and red regions in Figure 3 are sne, sse,
snw and ssw. In the following, we define:

NC = NR +Ncnw
+Ncne

+Ncse +Ncsw −Nrnw
−Nrsw

−Nrse −Nrne
−Nsnw

−Nssw −Nsse −Nsne
.

It is clear that the area of cnw is less than the area
of rnw; therefore Ncnw

< Nrnw
. Similarly it can be seen

that Ncne
< Nrne

, Ncse < Nrse and Ncsw < Nrsw . So,
according to statement , the maximum number of cells
in C is less than R. As a result, C contains O(∆k)
cells. As already mentioned, each cell contains O(k)
points from P , so set Gi contains O(k∆k) points. �

Figure 1: The area of C include set of points p ∈ P
which τNNS(p, t) = i

Figure 2: Rectangles Rn, Rs, Rw and Re

65

1st Iranian Conference on Computational Geometry

Figure 3: The areas of rnw, rne, rsw and rse, snw, sne,
ssw and sse, cnw, cne, csw and cse

In the worst case, all points will expire in a single
time step. However, using an amortization argument
and Lemma 4 it can be shown that on average, only
O(k∆k log n) point will expire in each time step.

Lemma 5 If the number of points p(t) ∈ P (t) with
τNNS(p, t, P) = i is at most γNNS(P) for any 0 ≤ i ≤
n and any t, then on average only O(γNNS(P) log n)
points expire per time step [2].

From Lemma 3 and 5 the following theorem can be
concluded:

Theorem 6 Under the Displacement Assumption, the
nearest neighbor in a set P of n points moving to
static query point q in the plane, can be maintained in
the black-box model in O(k∆k log n) amortized time per
time step, where ∆k is the maximum k-spread of P at
any time.

3 Conclusion

In this paper, an algorithm is presented to maintain the
nearest neighbor in a set points moving to static query
point in the KDS black-box model. The algorithm does
not require knowledge of k or ∆k. It only needs to know
dmax, the maximum displacement of any point in one
time step and also does not need to know the point tra-
jectories. It is also shown that the proposed algorithm
can update nearest neighbor in O(k∆k log n) amortized
time at each time step. Interesting open problems arise
when someone talks about time bound in worst-case
rather than amortized.

References

[1] J. Basch, L. J. Guibas and J. Hershenberger, Data

structure for mobile Data, Journal of algorithms,

31(1): 1-28, 1999.

[2] M. de Berg, M. Roeloffzen and B. Speckmann,

Kinetic convex hulls, delaunay triangulations and

connectivity structures in the black-box model,

Journal of Computational Geometry, 3 (1), 222-

249, 2012.

[3] M. de Berg, M. Roeloffzen and B. Speckmann, Ki-

netic 2-center in the black-box model, Proceedings

of the 29th annual symposium on Symposium on

computational geometry, 145-154, 2013.

[4] J. Erickson, Dense point sets have sparse delaunay

triangulations or ... but not too nasty, Discrete and

Computational Geometry, Volume 33, Issue 1, pp

83115, 2005.

[5] L.J. Guibas, Kinetic data structures a state-ofthe-

art report, In Proc. 3rd Workshop Algorithmic

Found. Robot., pages 191-209, 1998.

[6] L.J. Guibas. Kinetic data structures. In: D. Mehta

and S. Sahni, Handbook of Data Structures and Ap-

plications, Chapman and Hall/CRC, 2004.

[7] Agarwal, Pankaj K and Kaplan, Haim and Sharir,

Micha. Kinetic and dynamic data structures for

closest pair and all nearest neighbors, ACM Trans-

actions on Algorithms (TALG), Volume 5 Issue 1,

Article No. 4, 2008.

[8] Rahmati, Zahed and Abam, Mohammad Ali and

King, Valerie and Whitesides, Sue and Zarei,

Alireza, A simple, faster method for kinetic prox-

imity problems, Journal of Computational Geome-

try: Theory and Applications, Volume 48, Issue 4,

342-359, 2015.

66

ICCG 2018, Tehran, February 27, 2018

Exploring Rectangular Grid Environments

Mansoor Davoodi ∗ Mehdi Khosravian Ghadikolaei† Mohammad Mehdi Malekizadeh‡

Abstract

In this paper we study the problem of grid exploring
which is finding a shortest possible tour for a mobile
robot moving in an unknown environment. We focus
on a rectangular grid with m columns and n rows, de-
noted by R(m,n), as the environment. We assume the
robot can see only the four cells adjacent to its current
cell. Under such conditions, we investigate different
variants of exploration problem, and propose efficient
bounds and algorithms for the shortest tour in which
visits all the cells of R(m,n). We show that for odd
R(m,n), mn+1 and for even R(m,n), mn are the tight
lower bounds for the length of the minimum tour, and
propose efficient algorithms for finding such a tour. We
show that the algorithms are optimal if the starting cell
lies on the boundary of R(m,n). Finally we propose a
(1 + 4

mn)-competitive algorithm when the robot starts
at non-boundary cell.

1 Introduction

Exploration problems is one of the challenges of robot
motion planning. Based on type of the environment and
the characteristics of the robot, different kinds of ex-
ploring problems have been considered (e.g., blindness
or visibility of the robot, type of environment and dif-
ferent services). Exploration refers to the task of finding
a path, such that every point in the environment is seen
from at least one point on the path [4]. In the explo-
ration tour problem, path length minimization is stud-
ied in Manhattan and Euclidean metrics. The results
have applications in lawn mower, searcher and cleaner
robots.

Two models of environment are defined as follows:
one without hole and barrier that is called simple en-
vironment, and one with hole and barrier [7]. When
exploring is in a continuous environment, the visibil-
ity of the robot could be finite or infinite; but actually
robots are usually blind and understand their surround-
ings using proximity sensors. Also, some tasks in the

∗Department of Computer Science and Information Technol-
ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran, mdmonfared@iasbs.ac.ir
†LAMSADE Paris Dauphine University,

mehdi.khosravian-ghadikolaei@dauphine.fr
‡Department of Computer Science and Information Technol-

ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran, malekizadeh.mehdi90@gmail.com

framework of exploring are considered for robots which
necessitates their presence in the environment like lawn
mowers that need to move all over the environment to
cut the grass.

The grid exploration problem consists of finding the
shortest possible tour, which visits every cell of a grid at
least once [7]. We call two cells adjacent, if they share
a common edge. At each step, the robot can move to
an adjacent cell along the four main directions –north,
south, east and west–. We assume that the cells have
unit size, therefore, the length of the path is equal to
the number of steps from one cell to the another and
the robot has enough memory to store a map of known
cells.

There are two variants of the grid exploration prob-
lem. In the offline variant, the robot gets a map as
an input and computes a tour. In the online variant,
the robot has limited visibility and can recognize only
the four adjacent, without any prior knowledge [7]. A
classical graph theory problem named Hamiltonian cy-
cle is closely related to the exploration problem which
it consists in determining whether or not a given graph
contains a Hamiltonian cycle, i.e., a cycle which visits
every vertex exactly once. This problem is well known
to be NP − complete [9]. Umans and Lenhart [12] pre-
sented an O(n4) time algorithm for finding Hamiltonian
cycles in grids without hole, where n is the number of
cells. Salman [11] introduced alphabet grid graphs and
determined classes of alphabet grid graphs which con-
tain Hamiltonian cycles, moreover, it is demonstrated
that if an R(m,n) (rectangle with m columns and n
rows in which m,n ≥ 2) is odd (m×n is odd), then the
rectangle is non Hamiltonian and also is presented a pat-
tern to find a Hamiltonian cycle for the rectangular grid
graph for any even number m or n. Itai et al. [6] pre-
sented necessary and sufficient conditions for existence
of Hamiltonian paths in rectangular grid graphs and
proved that the problem for general grid graphs (can
contains holes) is NP − complete, which implies that
the grid exploration problem is NP − hard as well [6].
This result is particularly interesting because it demon-
strates that allowing holes in the input grids can make
the problem much harder. Arkin et al. [1] presented an
offline algorithm which achieves an approximation fac-
tor of 6

5 = 48
40 in grids without holes and a factor of 53

40
if it contains holes.

For online variant of grid exploration, Gabriely and
Rimon [3] presented an upper bound C + B for the

67

1st Iranian Conference on Computational Geometry

length of exploration tour that C is the number of cells
and B is the number of boundary cells. Icking et al. [5]
presented an upper bound C + 1

2E − 3 for length of ex-
ploration tour where E denotes the number of boundary
edges and showed that the best possible competitive ra-
tio is 2 for general grids. Miyazaki et al. [10] proved
that an online version of depth-first search achieves this
ratio, therefore, the focus moved to exploration of grids
without holes. Icking et al. [5] described an online
4
3−competitive algorithm which assumes that the robot
starts from the boundary of the grid. This ratio was
improved to 5

4 = 20
16 by Kolenderska et al. [8], who also

showed that the best possible ratio is at least 20
17 . In

this paper we show that the length of exploration tour
in the grid environment which is always 2-colorable is:
S ≥ C+

∣∣|V B |−|VW |
∣∣, where V B is the set of black cells

and VW is the set of white ones. We also show that the
length of optimal exploration tour in an R(m,n) (rect-
angle with m columns and n rows in which m,n ≥ 2) is
equal to C+ 1 if R(m,n) is odd (m×n is odd) and C if
R(m,n) is even (m× n is even), where C = m× n. For
the offline variant of exploring, we present an algorithm
to compute the optimal exploration tour in a grid rect-
angle. This algorithm takes time linear in the length of
the path, O(mn).

We prove that, every strategy in the online variant for
exploring of an R(m,n) with C cells needs at least C+2
steps, therefore, the lower bound of competitive ratio is
equal to 1+ 2

C . We also present an optimal algorithm to
compute the exploration tour in the grid rectangle by an
assumption that the starting cell lies on the boundary.
Finally we present a (1 + 4

C) − competitive algorithm
when the robot starts at a non-boundary cell.

2 A Lower Bound

The grid graph corresponding to a grid environment
consists of one node for every cell in the grid environ-
ment. Two nodes are connected by an edge, if their
corresponding cells are adjacent.

A graph is bipartite if its nodes can be partitioned
into two sets, so that all edges have one endpoint in
each set. Every bipartite graph is 2-colorable and has
no cycle with odd length.

Proposition 1 Grid graphs are bipartite.

Every bipartite graph is 2-colorable. Moreover we can
set white color to each odd node of the grid graph and
black to the even nodes. This implies that each node
in a grid graph has at most four adjacent with different
color.
Theorem 2 Every strategy for exploring a grid envi-
ronment with C cells needs at least C +

∣∣|V B | − |VW |
∣∣

steps, where |V B | and |VW | are the number of black and
white cells, respectively.

Proof. The grid environment is bipartite. Therefore,
to explore all cells we have a cycle with consequently

movement of black and white cells, because in each step
of exploration we enter to a cell which has different color
from the previous cell. Thus, if

∣∣|V B | − |VW |
∣∣ = k 6= 0,

to explore all the cells in the larger set, we need to
explore an equal number of cells in the other set which
means k extra visited cells. �

3 Optimal Exploration Tour in R(m,n)

In the offline variant of the grid exploration problem,
the entire grid is provided as input and the goal is to
determine a shortest exploration tour. Even though we
know that it is NP − hard to solve grid exploration in
general grids [6], the difficulty of the problem seems to
vary greatly depending on whether or not the grids are
allowed to have some holes. In the grid environment
without hole, exploration problem is still open. how-
ever, we present an algorithm to explore an R(m,n) in
time linear in the length of the path, O(mn).

Lemma 3 (see [2]). R(m,n) has a Hamiltonian cycle
if and only if m× n is even.

So the optimal exploration tour in R(m,n) is Hamil-
tonian cycle too.

Lemma 4 (see [11]). R(m,n) contains no Hamilto-
nian cycle if m× n is odd.

So, the length of exploration tour in R(m,n) is S ≥
(m× n) + 1.

Lemma 5 (see [6]). (R(m,n), s, t) has a Hamiltonian
path with started node s and final node t if:

Necessary conditions:

1. R is even (|V B | = |VW |) and s and t have different
color or

2. R is odd (|V B | = |VW |+ 1) and s and t are colored
by majority color.

And each the following conditions for the graph to
have no s,t Hamiltonian path:

3. R(m, 1) is a 1-rectangle and either s or t is not a
corner vertex (Figure 1(a)).

4. R(m, 2) is a 2-rectangle and (s, t) is a non-
boundary edge, that (s, t) is an edge and it is not
on the outer face (Figure 1(b)).

5. R(m, 3) is a isomorphic to a 3-rectangle R′(m, 3)
such that s and t are mapped to s′ and t′ and all of
the following three conditions hold:

(a) m is even,

(b) s′ is black, t′ is white,

(c) s′y = 2 and s′y < t′x (Figure 2(c)) or s′y 6= 2 and
s′y < t′x − 1(Figure 1(d)).

68

ICCG 2018, Tehran, February 27, 2018

s t

(a)

s

t

(b)

s

t

(c)

s

t

(d)

Figure 1: Rectangular grid graphs in which there is no
Hamiltonian path between s and t.

Then finding Hamiltonian path is done in liner time.

Corollary 6 The length of the optimal exploration tour
is m×n if R(m,n) is even, and (m×n) + 1 if R(m,n)
is odd.

Proof. By considering Lemma 3, if R(m,n) is even, we
have a Hamiltonian path which starts from s and ends
at one of four adjacent of s (Figure 2(a)). Thus, we
can change our Hamiltonian path to exploration tour
by moving toward s in one step. If R(m,n) is odd,
we have a Hamiltonian path which starts from s and
ends at t, one of four diagonal neighbors of s (Figure
2(b)). Therefore, we can change our Hamiltonian path
to exploration tour by moving toward s using traversing
one common adjacent between t and s. �

s

t

t

t

t

(a) Hamiltonian path in
even rectangle

s

t

t

t

t

(b) Hamiltonian path in
odd rectangle

Figure 2: Conditions for Hamiltonian path in R(m,n).

Corollary 7 Finding an optimal exploration tour prob-
lem in an R(m,n) without hole can be solved in time
linear in the length of the path, O(mn).

4 Competitive Complexity

In the online variant of the grid exploration problem the
robot has a limited visibility and must explore the en-
vironment from a starting cell with no prior knowledge.
Thus, the first question is whether the robot is still able
to find the optimal solution or has to approximate the
solution with a constant factor. There is a quick answer
to this question.
Theorem 8 Every strategy in the online variant for the
exploration of an R(m,n) with C cells needs at least
C + 2 steps.

Proof. Since the robot knows nothing about the di-
mensions of R(m,n) and its position in the environ-
ment, generally there are two different strategies for the
robot’s movements in two prior steps (Figure 3(a)):

1. First Strategy
This strategy decides to walk two steps to the west

and by these movements robot meets the boundary
of the environment (Figure 3(c)). The robot has two
choices for the next step, move toward either the north
adjacent or south adjacent. Without loss of generality,
assume the robot moves to the north one (Figure 3(d)).
In this state, the robot needs at least two additional
steps for exploring the environment (Figure 3(d)). We
can easily extend this pattern to build any rectangular
environment of arbitrary size by extending height and
width toward the north and east, respectively (Figure
3(e)). We can show easily that if the two first steps are
toward another directions (north, south or east), the
result is hold as well.

s

(a)

s

(b)

s

(c)

s

(d)

s

(e)

Figure 3: Tight example for two additional steps in
R(m,n) with First Strategy. Dashed lines is the op-
timal exploration tour.

2. Second Strategy
This strategy decides to move two steps toward per-

pendicular direction (Figure 4(c)). We close our rect-
angle as shown in Figure 4(d). The robot must con-
tinue its exploration in two odd rectangles with width
3. Considering Corollary 1, we know the length of ex-
ploration tour is C+1 in each odd rectangle, where C is
the number of cells. So, the strategy needs at least two
additional steps for exploring the whole environment.
We can easily extend this pattern to build rectangular
environment of arbitrary size by extending the height
toward the north and south as the height of each new
rectangle is odd (Figure 3(e)). We can easily show that
if the two first steps are toward the other perpendicular
directions (east-south, west-north,...), our final result is
hold.

By these two cases, we have shown that using any
strategies in online variant, it is need at least C + 2
steps to explore R(m,n), whereas the optimal strat-
egy in offline variant needs C steps (Figure 3(d), Figure
4(d)). �

Corollary 9 Every strategy for the exploration of a
rectangular grid environment with C cells is at least
1 + 2

C -competitive.

69

1st Iranian Conference on Computational Geometry

s

(a)

s

(b)

s

(c)

3

3

s

(d)

odd

odd

s

(e)

Figure 4: Tight example for two additional steps in
R(m,n) with Second Strategy. Dashed lines is optimal
exploration tour.

Proof. The tight example is obtained by exploring the
environment which is shown in Figure 3(d) and Figure
4(d). The length of the optimal tour is C, but the length
of robot’s tour which leads by an online strategy is at
least C + 2.

Sonline

Soptimal
=
C + 2

C
= 1 +

2

C

�

5 Algorithms of Exploration

5.1 Patterns of exploration in offline variant

In Section 3, we proved that the exploration tour in the
offline variant can be found in linear time in the length
of the path, O(mn). In this section, we present two
patterns to explore each rectangular grid. Depending
on even or odd rectangular grid these patterns can be
algorithmically extended to R(m,n), for any m and n.

1. R(m,n) is even:

Considering Lemma 1, if R(m,n) is even, we have an
exploration tour with the length C, where C is m× n.
Figure 5 gives an illustration of exploration tour with
2 examples R(10, 6) and R(9, 6). The patterns in this
figure can be used for finding an optimal exploration
tour of R(m,n) for any even number m or n.

2. R(m,n) is odd:

Considering Corollary 1, if R(m,n) is odd, we have an
exploration tour of length C+1. An optimal exploration
tour for R(9, 7) is shown in Figure 6. The pattern in this
figure can be used for finding an optimal exploration
tour of R(m,n) for any odd number m and n, where
m,n ≥ 3.

(a) Exploration tour in
R(10, 6).

(b) Exploration tour in
R(9, 6).

Figure 5: Patterns of exploration tour.

Figure 6: Exploration tour in R(9, 7).

5.2 Algorithms of exploration in online variant
In this section we present two algorithms for explor-
ing R(m,n) in online variant. If the robot starts at a
boundary cell, we present an optimal exploration algo-
rithm and when the starting cell is a non-boundary cell
we present an (1 + 4

C) − competitive exploration algo-
rithm.

s c1

c2c3

(a) Exploration tour in
R(9, 6).

s

c1 c2

c3

(b) Exploration tour in
R(9, 7).

Figure 7: Examples for algorithm’s output in the online
variant of exploring rectangular grid environment.

1. The starting cell lies on the boundary:
We present an algorithm to compute exploration tour

of R(m,n) when the starting cell lies on the bound-
ary. The robot is able to recognize either the number
of passing cells is even or odd. There are four possible
directions (north, south, east and west) for the robot to
move from one cell to an adjacent cell. Command CW
denotes rotated clockwise in the environment. Every
corner of the environment has only two adjacent and the
robot can recognize them. The robot begins his explo-
ration from starting cell in CW direction until reaches
the first corner. Then he moves to the next corner and
determines the number of cells between the corners is
odd or even. If it is even, the robot must walk CW to
reach the third corner and explores the remaining cells
by the zigzag form between columns (rows) to reach the
starting cell (Figure 7(a)). Otherwise, the robot explore
between two rows (columns) by the zigzag form to reach

70

ICCG 2018, Tehran, February 27, 2018

the third corner and after that continue his exploration
by the zigzag form between columns (rows) to reach the
starting cell (Figure 7(b)).

Algorithm 1 Boundray constraint
1: Walk CW to reach the first corner–called c1.
2: Walk CW to reach the second corner–called c2.
3: if |c1c2| is even then
4: Walk CW to reach the third corner–called c3.
5: Explore all rows (columns) by the zigzag form parallel to

c2c3 to reach the starting cell.
6: else
7: Walk between two last rows (columns) by the zigzag form

parallel to c1c2 until reach third corner–called c3.
8: Explore the rest rows (columns) by the zigzag form parallel

to c2c3 to reach the starting cell.
9: end if

We can easily prove that our algorithm finds optimal
exploration tour. If the number of cells from c1 to c2
(denoted by |c1c2|) is even, then R(m,n) is even, hence
we can continue our exploration using defined pattern
in the offline variant. In the other case, |c1c2| is odd,
hence R(m,n) can be either odd or even. If |c2c3| is
odd, our first zigzag strategy ends at c3. In this state,
for continuation of exploration, we have to explore a
visited cell again and after that it is easy explore the re-
maining rows (columns) by the zigzag form to reach the
starting cell without visiting any extra cells. Therefore
the algorithm finds the optimal exploration tour.

2. The robot starts at non-boundary cell:

We present a new algorithm for the case in which the
robot starts at a non-boundary cell. The main idea in
this algorithm is to subdivide the whole environment
into two smaller rectangular environments based on the
column of starting cell. In this algorithm the robot be-
gins his movement toward the south until reaches the
boundary cell, denoted by a. Then the robot continues
his exploration by one step toward east. If this cell is
a boundary cell, the robot continues his movement to
explore the right rectangle and after that explores the
left rectangles using Algorithm 1 (Figure 8(a)). Other-
wise, the robot goes back to a and explores the left and
right rectangles, respectively, using Algorithm 1 (Figure
8(b),(c)).

s

a

(a) Optimal exploration.

s

a

(b) A tight example.

Figure 8: Examples for algorithm’s output in the online
variant of exploring rectangular grid environment.

Algorithm 2 General Start Position
1: Walk to the south to reach a boundary cell–called a.
2: Walk to the east cell.
3: if is not a corner cell then
4: Go back to a.
5: Explore rectangle induced by s column and west cells by

Algorithm 1 until reach the cell adjacent to the north s.
6: Walk to east cell.
7: Explore the remaining cells by Algorithm 1 until reach s.
8: else
9: Walk to the north until reach boundary.

10: Walk to the west cell.
11: Walk to the south until reach the cell adjacent to the north

s.
12: Walk to the west cell.
13: Explore the remaining cells by Algorithm 1 until reach s.
14: end if

Theorem 10 The algorithm Genaral Start Position is
(1 + 4

C)− competitive.

Proof. Suppose R(m,n) is even in which m is even
and n is odd. Suppose s lies on the m′-th column of
the rectangle. In the worst case, if m′ is odd, we have
two odd rectangles R(m′, n) and R(m−m′, n) such that
. However, both subdivided rectangles are odd and we
can explore them with one additional step by using Al-
gorithm 1. Also, as it is shown in Figure 8(c), the robot
visits cell a and the eastern adjacent cell of a twice. So,
we have four extra cell, in general.

Sonline

Soptimal
=
C + 4

C
= 1 +

4

C

�

6 Conclusion

Different variants of online exploring in a rectangular
grid R(m,n) for a single robot have been studied in
this paper. Efficient bounds and algorithms have been
proposed depending on the odd or even size of R(m,n)
and also locus of starting position. In all of these cases,
we propose almost optimal online algorithms linear to
the length of the output path. As a future work, investi-
gating the problem for two or more robots is suggested.
In fact in this paper, we assumed a very limited visibil-
ity for the robot, while it seems efficient collaborating
robots under such assumption is challenging.

References

[1] E. M. Arkin, S. P. Fekete, and J. S. Mitchell. Approxi-
mation algorithms for lawn mowing and milling. Com-
putational Geometry, 17(1):25–50, 2000.

[2] S. D. Chen, H. Shen, and R. Topor. An efficient al-
gorithm for constructing hamiltonian paths in meshes.
Parallel Computing, 28(9):1293–1305, 2002.

[3] Y. Gabriely and E. Rimon. Competitive on-line cover-
age of grid environments by a mobile robot. Computa-
tional Geometry, 24(3):197–224, 2003.

71

1st Iranian Conference on Computational Geometry

[4] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
Exploring an unknown cellular environment. In Eu-
roCG, pages 140–143, 2000.

[5] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
Exploring simple grid polygons. In Computing and
Combinatorics, pages 524–533. Springer, 2005.

[6] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM Journal on Com-
puting, 11(4):676–686, 1982.

[7] T. Kamphans. Models and algorithms for online ex-
ploration and search. PhD thesis, University of Bonn,
2006.

[8] A. Kolenderska, A. Kosowski, M. Ma lafiejski, and
P. Żyliński. An improved strategy for exploring a grid
polygon. In Structural Information and Communication
Complexity, pages 222–236. Springer, 2010.

[9] J. A. McHugh. Algorithmic graph theory. Prentice Hall
Englewood Cliffs, 1990.

[10] S. Miyazaki, N. Morimoto, and Y. Okabe. The online
graph exploration problem on restricted graphs. IEICE
transactions on information and systems, 92(9):1620–
1627, 2009.

[11] A. Salman, E. Baskoro, and H. Broersma. A note con-
cerning hamilton cycles in some classes of grid graphs.
Journal of Mathematical and Fundamental Sciences,
35(1):65–70, 2003.

[12] C. Umans and W. Lenhart. Hamiltonian cycles in solid
grid graphs. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 496–
505. IEEE, 1997.

72

ICCG 2018, Tehran, February 27, 2018

Shortest Path Problem among Imprecise Obstacles

Zahra Gholami∗ Mansoor Davoodi†

Abstract

In this paper, we consider the shortest path problem
among a set of imprecise segments as obstacles. In
the precise context, each segment is defined by its end-
points. Here, we assume an uncertainty region for the
endpoints of the segments and study the problem of ar-
ranging the obstacles by placing a point inside each un-
certainty region in such a way that maximizes the possi-
ble shortest path. We prove the NP-completeness of the
maximum shortest path problem for both the Euclidean
and Manhattan metrics and propose a 1

2 -approximation
algorithm for it when the uncertainty regions are mod-
elled as independent disjoint disks. If the regions are
dependent on separation factor k, we obtain the ap-
proximation factor of 1− 2

k+4 .

1 Introduction

Regarding the widespread applications of shortest path
problems in motion planning, VLSI design and network
wire-routing, the necessity of investigation over short-
est path problems has currently become evident. It is
unsurprising, therefore, that finding a shortest path for
robots or points within a workspace with obstacles has
been under investigation as an intriguingly applicable
problem. Taking some constraints and properties of
obstacles or workspaces into consideration, various ap-
proaches like visibility graph [8] have been suggested for
the shortest path problem. These approaches assume
the workspace, data processing, and motions completely
in a precise manner, however, this assumption is not
realistic. For instance, in the robot motion planning,
many uncertainties such as robot’s sensing and acting
are inevitable. In addition to the mechanical constraints
of robots, a raft of data is inaccessible due to the differ-
ent sources of error such as collecting real data about
the world and its dynamical properties. Clearly, these
uncertainties make these approaches inefficient under
uncertainty and, consequently, imprecision considera-
tion will draw a more complete and accurate picture
of finding shortest paths.

Region-based models [3, 12], are popular approaches

∗School of Computer Science and Software Engineering, The
University of Western Australia, eli.gholami@uwa.edu.au
†Department of Computer Science and Information Technol-

ogy, Institute for Advanced Studies in Basic Sciences, Zanjan,
mdmonfared@iasbs.ac.ir

to model the imprecision. In this models, the precise
point may appear anywhere in the region with a uni-
form probability. The goal of the region-based mod-
els for handling imprecision is to find the critical point
for each geometric region in order to minimize or max-
imize specific values. For example, Löffler and van
Kreveld discussed the convex hull of imprecise points
in various types of regions which maximize or mini-
mize area/perimeter of the convex hull [12]. For each
variant, they either provide an NP-hardness proof or a
polynomial-time algorithm. As another example, the
problem of finding Minimum Spanning Tree (MST) for
imprecise points, turn out to be the problems of finding
the Minimum and Maximum-weight MST. This prob-
lem has been studied by Dorrigiv et al. [6] under disk-
shaped uncertainty regions.

Regarding to the applications of the shortest path
problem, it has been considerably studied under differ-
ent parameters close to uncertainty conditions. For a
sequence of simple polygons and two points s and e, the
Touring Polygons Problem (TPP) is looking for a tour
from s to e so that all polygons are visited in the given
order. A more general form of TPP is the Shortest Path
Problem (hereafter: SPP) for imprecise points. In this
problem, a graph of polygons is given instead of an order
of polygons. In a directed graph, traversal between ver-
tices is only allowed through the edges. The aim of SPP
is to find a placement of the vertices which minimizes
the shortest distance between s and e. The maximum
variant of SPP has been studied which searched for such
a placement that maximizing the shortest path length.

For this problem in the case of significant uncertainty
of the arc lengths, Yu et al. [14] presented exact and
heuristic solutions. Dror et al. in [7] showed that for
convex and disjoint polygons TPP is solvable in poly-
nomial time. NP-hardness of such a problem has been
proved for any metric, Lp, p ≥ 1 in case of non-convex
polygons (i.e. they are disjoint [1] or overlapping poly-
gons [7]). Moreover, some approximation algorithms are
given for TPP in cases for which the polygons are non-
convex [13]. Also, the maximum variant of TPP is ex-
plored by Disser et al. in [5] that provided a polynomial
time algorithm for computing a maximum placement.

In general, SPP is NP-hard for any metric Lp, p ≥ 1.
Disser et al. in [4] showed that for axis-aligned rectilin-
ear polygons (not necessarily convex) under Manhattan
metric, proposing a polynomial time algorithm is feasi-
ble. Their study in [5] shows that the problem is hard to

73

1st Iranian Conference on Computational Geometry

approximate for any approximation factor (1 − ε) with
ε < 1/4, even when the polygons consist of only verti-
cally aligned segments.

In this paper, we define an imprecise segment as an
obstacle whose endpoints are some regions instead of
points. We study the problem of maximum possible
shortest paths’ length. Our goal in Maximum Shortest
Path Problem (hereafter: Max-SPP) is placing a point
inside each region (a placement) in order to arrange the
obstacles such that the shortest path from s to e be-
comes maximum. In other words, Max-SPP is SPP in
continuous space instead of the graph.

This paper makes the following contributions:

1. We prove NP-completeness for the decision version
of Max-SPP when the uncertainty regions are mod-
elled as segments in the region-based models.

2. When the uncertainty regions have been modelled
as disjoint disks, we propose a 1

2 -approximation al-
gorithm for Max-SPP. Also in cases where the re-
gions are k-separable disks (see Definition 4) we
show that the approximation factor of the algo-
rithm is 1− 2

k+4 .

2 Problem Formulation

Free Space: In this work, we assume points of s and
e to be located within the free space. In the precise
manner, the free space is introduced as all points in the
workspace that do not belong to any obstacles. How-
ever, in the imprecise manner, the free space refers to all
points that do not belong to any obstacles for all possi-
ble placements. So, there are no placements for which
obstacles contain points of s and e. In other words, s
and e are not allowed to be located in the obstacles for
any possible placement.

For a robot, we consider a workspace containing start
point s, endpoint e in free space and a set of imprecise
segments as obstacles. We define the imprecise points
or regions as a set
R = {R1, R2, R3, ..., Rn};Ri ⊂ IR2, 1 6 i 6 n.

Where n is the number of obstacles’ endpoints in the
workspace. Suppose I to be a set of points that we
achieve by placing a point or instance inside each re-
gion of R, like the placement

I = {I1, I2, I3, . . . , In}; Ii ∈ Ri, 1 6 i 6 n. (1)

If L(I) refers to the length of the shortest path from s
to e for the placement I, then in the Max-SPP, the
goal is to maximize L(I) by setting a placement like

Imax = {Imax
1 , Imax

2 , Imax
3 , . . . , Imax

n }; Imax
i ∈ Ri, 1 6 i 6 n

(2)
(I)max represents a placement which maximizes the
shortest path length between s and e.

(a) (b)

Figure 1: (a) A workspace containing start and endpoint
of shortest path, segments as obstacles and their uncer-
tain endpoints which are modeled as a line segments.
(b) Placing a point for each region of uncertainty in
order to maximize the distance between s and e.

The Decision Version of Max-SPP:
Input: R as a set of imprecise points, points of s and

e, and a length value of B.
Output: YES if there exists a placement like I that

L(I) > B, NO otherwise.
The Existence Path Problem (hereafter: EPP) is
a problem whose answer is YES if there exists a path
from s to e for at least a set of I ⊂ R, NO otherwise.

3 Maximum Shortest Path Problem (Max-SPP)

In this section, with the help of reduction from the
SAT problem to Max-SPP, we show the hardness results
for Max-SPP. We assume a simple case of Max-SPP in
which the imprecise regions are modelled by segments.
Since in this case the approach for NP-hardness proof
of the Largest Convex Hull problem in [12] is not ap-
plicable for Max-SPP, we add some crucial obstacles to
the workspace.

For a given SAT instance (formula ψ), we construct
a Max-SPP instance. For this, we setup R(ψ) including
imprecise obstacles’s endpoint. Then, we prove that the
decision version of Max-SPP returns YES if and only if
the SAT formula ψ is satisfiable.

As illustrated in Fig. 2(a), for converting the SAT
formula to the Max-SPP instance, we divide a circle
into M = c+ q arcs, where c and q are the numbers of
clauses and variables in formula ψ, respectively. The c
clauses and q variables of ψ are characterized as arcs in
the Max-SPP instance. This unique circle contains one
arc for each clause and one arc for each variable as well
as two points s, e and M separator points that separate
arcs from each other. We locate the points s and e
by some sufficiently small ε > 0 above and below the
separator point of z (Fig. 2(a)). In addition, to insert

74

ICCG 2018, Tehran, February 27, 2018

some obstacles we draw segments from circle center at
o to all separator points and a segment from point of z
to the workspace boundary.

Variable Arcs Configuration: As Fig. 2(b) shows,
for each variable in ψ like v, we have an arc that con-
tains: a segment parallel to lr (shown as tf), and two
sets of points, Pv and Qv, with the same number of
elements equal to 3c.

Notably, although the points in Pv corresponding to
each variable like v are placed such that they are all on
the convex hull of {l, r, f}, Pv and Qv, they are not on
the convex hull of {l, r, t}, Pv and Qv. As shown in Fig.
2(a), points in Qv are symmetrical with Pv.

Clause Arcs Configuration: As Fig. 2(c) shows,
for each clause in ψ like c we have an arc containing
a point hc. If the variable v appears in clause c as a
positive literal, we connect the point hc to a member of
Pv. If the variable v appears in clause c as a negative
literal, we connect the point hc to a member of Qv. In
this way, the obstacles as precise and imprecise regions
would be produced.

• the connection between the workspace boundary
and the separator point of z as a precise obstacle.

• the connection between the circle center at o and
all separator points as precise obstacles.

• the connection between the circle center at o and
the imprecise regions with an endpoint hc and the
other in Pv or Qv sets as imprecise obstacles.

• the connection between the circle center at o and
the imprecise regions with endpoints at t and f as
imprecise obstacles.

Finally, in the workspace constructed by formula ψ,
maximizing the shortest path between s and e is now
equal to the sum of the maximized shortest paths be-
tween two separator points. So, in order to maximize
the shortest path between two separator points (which
locate on a single arc) for every variable arc like v, the
selected endpoint should be either t together with all
points in Qv or f together with all points in Pv. More-
over, for the optimal placement of Imax point hc should
be selected in each clause arc such as c.

Theorem 1 Suppose we are given a workspace contain-
ing a set of segment obstacles and a set of imprecise
points as obstacles’ endpoints. Obstacles are assumed
to be arbitrary segments that can have common inter-
sections only at their endpoints. For such a workspace
with these imprecise obstacles, Max-SPP is NP-hard un-
der the Euclidean metric and its decision version is NP-
complete.

(a) (b) (c)

Figure 2: (a) A circle is divided into arcs in which all
the segments passing through o represent obstacles. The
points s and e located in some sufficiently small ε > 0
above and below the separator point of z. (b) A variable
arc. (c) A clause arc.

4 Approximation Algorithm for Max-SPP

Regarding the NP-hardness of Max-SPP, the approxi-
mation algorithms could be used for estimating the solu-
tion. For approximating the optimal placement of Max-
SPP, we focus on those workspaces which their obstacles
are just segments and their imprecise endpoints are dis-
joint disks. Our approximation algorithm simply selects
center of disks as placement I (i.e. as an approximate
placement). Similar to [6], we have proved that the re-
sult of this simple algorithm, L(I), is not smaller than
half of that in optimal placement.

Definition 1 Let L(Icenter) and SP (Icenter) de-
note respectively the solution value and the shortest path
of the approximation algorithm that selects the disks’
centers as the placement I.

Definition 2 We define SP (Imax) and L(Imax) as
the shortest path and its length in the optimal placement
for Max-SPP, respectively.

Definition 3 We suppose SP ′(Imax) is the path from
s to e with the same topology1 as SP (Icenter) and with
the point of (Imax). Noticeably, this path is not neces-
sarily the shortest path.

Let L(Imax) and L(SP ′(Imax)) stand for the length
of paths from s to e for paths SP (Imax) and SP ′(Imax),
respectively. Then we have

L(Imax) 6 L(SP ′(Imax)) (3)

Theorem 2 Consider a workspace such that the im-
precise obstacles’ endpoints are disjoint disks. Now, in
the approximation algorithm assuming the center of all
disks as the placement Icenter for Max-SPP, we have

1

2
L(Imax) 6 L(Icenter) (4)

1The sequence of obstacles and their endpoints throughout a
path.

75

1st Iranian Conference on Computational Geometry

If the disks are sufficiently far from each other, the ap-
proximation factor of the algorithm in Theorem 2 will
be improved to more accurate values. So, in the fol-
lowing, we prove that the larger the distances between
disks, the better the approximation factor we get (i.e.
closer to 1).

Definition 4 As defined by [10], a given set of disks
with the largest radius rmax are k-separable when for
the maximum value of k the minimum distance between
each pair of disks is at least k.rmax.

Theorem 3 Consider a workspace such that the im-
precise obstacles’ endpoints are k-separable disks with
k > 0. Now, in the approximation algorithm assum-
ing the center of all disks as the placement Icenter for
Max-SPP, we have

(1− 2

k + 4
)L(SP (Imax)) 6 L(SP (Icenter)) (5)

Proof. See the Appendix. �

Now, obviously, farther disks (i.e. larger value of k)
leads the algorithm to more accurate approximation fac-
tors (i.e. closer to 1).

5 Conclusion

In this paper, we modelled the imprecise points by using
some geometric approaches and proved that the Max-
imum Shortest Path Problem (Max-SPP) is NP-hard
and its decision version is NP-complete. For this proof,
we considered the obstacles to be segments and their
endpoints to be imprecise points modelled as segments.
Remarkably, the obstacles can only be intersected at
their endpoints. In addition, we presented an approxi-
mation algorithm with approximation factors of 1/2 and
1− 2

k+4 for disk and k-separable disk as imprecise points,
respectively.

A possible future work includes the investigation of
the hardness of Max-SPP for different shapes which im-
precise points could be modelled with.

References

[1] Ahadi, A., Mozafari, A., Zarei, A.:Touring dis-
joint polygons problem is NP-hard. In Combinato-
rial Optimization and Applications (pp. 351-360).
Springer International Publishing (2013)

[2] Choset, H., M., Ed.: Principles of robot mo-
tion: Theory, Algorithms, and Implementation
MIT press (2005)

[3] Davoodi, M., Mohades, A.: Data imprecision un-
der λ-geometry model: Range searching problem.
Scientia Iranica, 20(3), pp. 663-669 (2013).

[4] Disser, Y., Mihalk, M., Montanari, S., Wid-
mayer, P.: Rectilinear Shortest Path and Rectilin-
ear Minimum Spanning Tree with Neighborhoods.
In Combinatorial Optimization. Springer Interna-
tional Publishing, 208-220 (2014)

[5] Disser, Y., Mihalk, M., Montanari.: Max Shortest
Path for Imprecise Points. In EuroCG, (2015)

[6] Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawa-
mura, A., López-Ortiz, A., and Seco, D.: On Min-
imum and Maximum-weight Minimum Spanning
Trees with Neighborhoods. In: Approximation and
Online Algorithms. Springer Berlin Heidelberg, 93-
106 (2013)

[7] Dror, M., Efrat, A., Lubiw, A., Mitchell, J. S.:
Touring a sequence of polygons. In Proceedings of
the thirty-fifth annual ACM symposium on Theory
of computing, 473-482 (2003)

[8] Ghosh, S. K., Mount, D. M.: An output-sensitive
algorithm for computing visibility graphs. SIAM
Journal on Computing, 20(5), 888-910 (1991)

[9] LaValle, S., M.: Planning Algorithms. Cambridge
university press (2006)

[10] Lichtenstein, D.: Planar Formulae and Their Uses.
SIAM journal on computing, 11(2), 329-343 (1982)

[11] Löffler, M., van Kreveld, M.: Largest Bounding
Box, Smallest Diameter, and Related Problems
on Imprecise Points. In: Algorithms and Data
Structures, Springer Berlin Heidelberg, pp. 446-457
(2007)

[12] Löffler, M., van Kreveld, M.: Largest and small-
est convex hulls for imprecise points. Algorithmica,
56(2), 235-269 (2010)

[13] Pan, X., Li, F., Klette, R.: Approximate shortest
path algorithms for sequences of pairwise disjoint
simple polygons, 175-178 (2010)

[14] Yu, G., Yang, J.: On the robust shortest path prob-
lem. Computers and Operations Research, 25(6),
457-468 (1998)

[15] Surmann, H., Huser, J., Wehking, J.: Path Plan-
ning far a Fuzzy Controlled Autonomous Mobile
Robot. In: Fifth IEEE International Conference on
Fuzzy Systems, Vol. 3, pp. 1660-1665. IEEE (1996)

76

ICCG 2018, Tehran, February 27, 2018

On some VC-combinatorial notions in computational geometry

Alireza Mofidi∗

Abstract

We study some VC-combinatorial and asymptotic as-
pects of certain set systems, in particular those with
more importance in the sense of applications in compu-
tational geometry, extremal combinatorics and learning
theory.

1 Introduction

Several aspects of interactions between combinatorial
features of set systems and computational geometri-
cal properties of them have been explored in the con-
text of VC-theory and discrepancy theory. For exam-
ple many connections between notions of VC-dimension,
VC-density, ε-net theorem and (p,q)-theorem from com-
binatorial sides and sampling methods and geometric
algorithms from computational geometric side has been
vastly investigated. The theory of Vapnik-Chervonenkis
(abbreviated by VC-theory) is a powerful combinato-
rial theory discovered by Vapnik and Chervonenkis (see
[12]) and has been investigated since the early seven-
ties. This theory is developed by both combinatorists
and computer scientists in order to capture certain com-
plexities in some mathematical objects which are called
set systems and naturally appear in several situations in
both disciplines. Note that different strong connections
between this theory and many other fields such as logic
and model theory has been discovered. Nowadays this
theory is a foundation and essential ingredient of several
fields and have found numerous applications in learning
theory, statistics, extremal combinatorics, model theory
and computational geometry. One can see for example
chapter 44 of [3] (with the title ”the discrepancy method
in computational geometry (B. Chazelle)”) for a survey
of applications of this theory in computational geometry
and also algorithms related to it.

By a set system (X,F) we mean a set X which is
called the domain of the set system and a family F of
its subsets. For a set system (X,F) and Y ⊆ X define

F ∩ Y := {A ∩ Y : A ∈ F}.

We call the new set system F ∩ Y on the domain Y
the trace of the set system F on the set Y . In a set

∗Department of Mathematics and Computer Science, Amirk-
abir University of Technology and Institute for research in funda-
mental sciences IPM mofidi@aut.ac.ir

system (X,F) a subset Y ⊆ X is called shattered if
F ∩Y = P(Y). The VC dimension of F , V C(F), is the
largest integer n (if exists) such that there exists some
subset of X of size n which is shattered by F . If such
n does not exist, then V C(F) =∞. By a subsystem of
a system (X,F) we mean the trace of some subset of
F on some subset Y ⊆ X. The following fundamental
theorem was proved in [10] and [11]. Also there are
many other proofs for this theorem.

Theorem 1 (Sauer-Shelah lemma) Assume that
(X,F) is a set system with V C(F) = d. Then for
every finite Y ⊆ X we have

|F ∩ Y | 6
d∑

i=0

(|Y |
i

)
.

The following theorem is also an important known
result about set systems.

Theorem 2 Let (X,F) be a set system where X is fi-
nite. Then

|ssht(F)| 6 |F| 6 |sht(F)|

where by sht(F) and ssht(F) we mean the set of all
subsets of X shattered and strongly shattered by F re-
spectively.

Geometric examples are source of many ideas in VC-
theory. One can see for example [2] to see some specific
structures studied by VC dimension. Also the following
theorem and its extensions are important results which
connects many ideas in VC-theory to computational ge-
ometry.

Theorem 3 Let S1, . . . , Sn be convex subsets of Rd
with n > d. If every d+ 1 of these sets have non-empty
intersection, then the intersection of all is non-empty
(
⋂n
i=1 Si 6= ∅).

From another point of view, VC-dimension is in di-
rect relation with both PAC learnability and also ex-
istence of compression scheme. In fact a system F is
PAC learnable if and only if V C(F) is finite. Also
if (X,F) admits a compression scheme, then it has
bounded VC-dimension. More precisely if (X,F) ad-
mits a k-compression scheme then vc(F) ≤ k. The
question of the converse side was an important problem.
Existence of compression schemes of size depending on
VC was proven in [9] in the following way.

77

1st Iranian Conference on Computational Geometry

Theorem 4 Assume that V C(F) = d and the dual
set system F∗ satisfies V C(F∗) = d∗. Then F has a
compression scheme of size O(dd∗). In particular (as
V C(F) ≤ d implies V C(F∗) < 2d+1), only assuming
that V C(F) ≤ d we get a compression scheme of size
2O(d).

By using tools from model theory, several aspects of
interactions between combinatorial features of set sys-
tems, learning theoretic properties of them and certain
computational geometric features of them have been
explored in different works in recent years such as [4]
and [6]. For example in [6] several techniques from
model theory was used in order to construct compres-
sion schemes in certain situations and examples.

2 Results

One can enrich the classes of set systems by assuming
extra conditions (in particular some extremal properties
in terms of Sauer-Shelah lemma) and then study the
VC-theoretic and computational geometrical impacts of
them. Among the important classes, one can consider
the class of maximum systems. We call a set system
(X,F) with V C(F) = d a d-maximum system if for
any Y ⊆ X the inequality of the Sauer-Shelah lemma
turns to be equality for F ∩ Y . There are also other
extremal combinatorial assumptions which impose very
nice combinatorial structures on the systems. For exam-
ple in [1] investigation of classes with certain extremal
properties was started and then later was generalized
in different directions. Restricting to classes with above
extra conditions enables us to study certain problems
in computational geometry and statistical learning the-
ory from the point of view of the techniques existing
in such classes. For example construction of a sample
compression scheme of size equal to their VC-dimension
for some classes with extremal properties was recently
done by Moran and Warmuth in [8]. This is an im-
provement of Theorem 4 in the restricted case of classes
with extremal properties studied in [1]. Note that these
classes include maximum systems. A property which
plays important role in many situation in the study of
these systems (and also maximum systems) is that these
classes are very well behaved in terms of some set system
operations such as restrictions and derivations.

In this work we continue studying above mentioned
systems with extremal properties and consider some
properties of them in particular those with some rich
examples in the sense of computational geometry and
learning theory. We mostly focus on a particular
class containing the maximum systems and build a
combinatorics-model theoretical framework appropriate
for them. For example we investigate ultraproduct con-
struction of them and build very large systems which

possess many nice properties of the element of prod-
uct. This method gives some understanding of limit
behaviour of the systems as well as combinatorial in-
sights about their relations to each other. Also this con-
struction could be considered as a method for building
certain systems with extremal properties in infinitary
settings. In fact we construct some new (infinite) fam-
ilies of extremal classes using the above constructions.
We also use some logical methods to study certain VC-
combinatorial invariants defined in [7]. The following
theorem is an instance of some asymptotic results ob-
tained for analysing the combinatorial structure of cer-
tain limits of systems.

We state and prove the following result:

Theorem 5 Let (X,F) be a countable set system and
Y a limit ultraproduct structure (w.r.t some indexing set
λ and suitable incomplete ultrafilter). Let XY (which we
denote it here by Z for simplicity) be the image of em-
bedding of X in Y . Also for every family {fi : i < λ} of
elements of the system with the property that f := [fi]
has value 1 on Z, define O[fi] := Zc ∩ f−1(1). Simi-
larly, for every family {gi : i < λ} of elements of the
system with the property that g := [gi] has value 0 on
Z, define P[gi] := Zc ∩ g−1(0). Then O[fi]’s and P[gi]’s
are mutually intersecting.

Proof. In the first step we mention that letting X =
{ai : i < ω} and Y := Xλ/D where λ is a cardinal
and D is a non-principal ultrafilter on λ, we have that
Y \XY 6= ∅ if and only if D is a σ1-incomplete ultrafilter.

Assume that X = {ai : i < ω} and Y := Xλ/D. It is
not difficult to see that every b ∈ Y with representation
b := [ani

] can be seen as a partition P b = {P bn : n < ω}
of λ with P bn := {i < λ : ni = n}. Also conversely it is
easy to see that every partition P = {Pn : n < ω} of λ or
anyA ∈ D gives rise to a unique element bP := [ani] ∈ Y
where ni = n ⇔ i ∈ Pn for each i < λ. Moreover,
b ∈ Y \XY if and only if for every n, P bn 6∈ D.

Claim 1: Assume that {fi : i < λ} are a sequence of
subsets of X such that f := [fi] takes value 1 on XY .
For every n < ω define Bn := {i < λ : fi(an) = 1}.
Then for every b := [ani

] in Y , f(b) = 1 if and only if⋃
n<ω(Bn ∩ P bn) ∈ D. Similarly, the same holds if one

replaces all values 1 to 0.

Proof of claim 1:
Let b := [ani

] ∈ Y and let Pb be its corresponding
partition. Define Cb := {i < λ : fi(ani

) = 1}. So
f(b) = 1 if and only if Cb ∈ D. On the other hand we
have

Cb =
⋃

n<ω

(C ∩ P bn) =
⋃

n<ω

({i < λ : fi(an) = 1, n ∈ P bn})

=
⋃

n<ω

(Bn ∩ P bn).

78

ICCG 2018, Tehran, February 27, 2018

Combining these, we have f(b) = 1 if and only if⋃
n<ω(Bn ∩ P bn) ∈ D as desired.

One can easily see that by using the above analysis
there is a one to one correspondence between elements
of f−1(1) \XY and partitions of λ with the mentioned
property.

Claim 2:
Assume that X and Y and {fi : i < λ} be a as

above such that f := [fi] takes value 1 on XY . Let
Bn := {i < λ : fi(an) = 1}. Then the following hold:

Firstly, if
⋂
n<ω Bn ∈ D then f(b) = 1 for every b ∈

Y .
Secondly, if

⋂
n<ω Bn 6∈ D then there exists some b ∈

Y \XY such that f(b) = 1.
Similarly, the same above results hold if one replaces

all values 1 to 0.

Proof of claim 2:
Fix an arbitrary b ∈ Y \XY . Assume that b = [ani]

where ani
∈ X for each i. Let P b and P bn’s be as defined

above By using analysis we have done before and since
b 6∈ XY , we have P bn 6∈ D for each n. Define L :=

⋂
Bn.

By our assumption we have L ∈ D. Hence

⋃

n<ω

(P bn ∩Bn) ⊇
⋃

n<ω

(P bn ∩ L) = L ∈ D.

Now again by some arguments in above we have f(b) =
1. Since b was arbitrary, therefore f takes value 1 on
whole of Y . This proves the first part.

Now for the second part define Hn :=
⋂
i=1,...,nBi. So

Hn ∈ D and also Hn+1 ⊆ Hn for each n and
⋂
n<ωHn =⋂

n<ω Bn 6∈ D. Define En := Hn \ Hn+1 and E :=⋃
n<ω En. Now En’s are mutually disjoint and since

En ⊆ Hc
n+1 then En 6∈ D. On the other hand we have

E = H1 \
⋂

n<ω

Hn ∈ D

where we are using the fact that
⋂
n<ωHn 6∈ D. Note

that for each n we have Bn ∩ En ⊇ Hn ∩ En = En. So

⋃

n<ω

(Bn ∩ En) ⊇
⋃

n<ω

En = E ∈ D, (∗).

Now let P := {Pn : n < ω} be a partition of E (as
an element of D) where Pn := En. Also let bP ∈ Y
be the element corresponding to this partition defined
previously. Each member of P does not belong to D.
So bP ∈ Y \XY . One can see that P bP = P and each
P bPn coincides with En. Therefore, by using the fact (∗)
we have f(bP) = 1 as desired in the second part.

Now we use the above analysis in order to prove the
following claim:

Claim 3:
Assume that X and Y be a as before and assume

that {fi : i < λ} and {gi : i < λ} be families of some
elements of U such that f := [fi] has value 1 on XY

and g := [gi] has value 0 on XY . Then there is some
b ∈ Y \XY such that f(b) = 1 and g(b) = 0.

Proof of claim 3:
For every n < ω define Bn := {i < λ : fi(an) = 1}

and Cn := {i < λ : gi(an) = 0}. For every n we have
Bn ∈ D and Cn ∈ D. We divide the rest of proof to
three cases.

(I:
⋂
n<ω Bn ∈ D and

⋂
n<ω Cn ∈ D):

By using results proved earlier, for both Bn’s and
Cn’s one concludes that for every b ∈ Y , f(b) = 1 and
g(b) = 0.

(II: Exactly one of
⋂
n<ω Bn ∈ D or

⋂
n<ω Cn ∈ D

happens):

Without loss we may assume that
⋂
n<ω Bn ∈ D and⋂

n<ω Cn 6∈ D. By using above claims for Bn’s, one
concludes that f takes value 1 on whole of Y . Now there
is some b ∈ Y \ XY such that g(b) = 0. So combining
these we have f(b) = 1 and g(b) = 0.

(III:
⋂
n<ω Bn 6∈ D and

⋂
n<ω Cn 6∈ D):

For every n < ω define Hn := Bn ∩ Cn. So Hn’s
belong to D. Also

⋂
n<ωHn 6∈ D. Define H ′n :=⋂

i=1,...,nHi. So H ′n ∈ D and also H ′n+1 ⊆ H ′n for
each n and

⋂
n<ωH

′
n =

⋂
n<ωHn 6∈ D. Define En :=

H ′n \H ′n+1 and E :=
⋃
n<ω En. Now En’s are mutually

disjoint and since En ⊆ H ′n+1
c then En 6∈ D. On the

other hand we have

E = H ′1 \
⋂

n<ω

H ′n ∈ D

where we are using the fact that
⋂
n<ωH

′
n 6∈ D. Note

that for each n we have Bn ∩ En ⊇ H ′n ∩ En = En and
Cn ∩ En ⊇ H ′n ∩ En = En. So

⋃

n<ω

(Bn ∩ En) ⊇
⋃

n<ω

En = E ∈ D, (1)

⋃

n<ω

(Cn ∩ En) ⊇
⋃

n<ω

En = E ∈ D. (2)

Now let P := {Pn : n < ω} be a partition of E (as
an element of D) where Pn := En. Also let bP ∈ Y
be the element corresponding to this partition defined
earlier. Each member of P does not belong to D. So
bP ∈ Y \XY . One can see that P bP = P and each P bPn
coincides with En. Therefore, by using the facts (1) and
(2) above and previous claims we have f(bP) = 1 and
g(bP) = 0 as desired. This completes the proof of claim
3.

79

1st Iranian Conference on Computational Geometry

Now Theorem 5 can be obtained by a careful using of
claim 3. �.

As a corollary of Theorem 5 one can mention the
following. Let (X,F) be a set system, and D a σ-
incomplete ultrafilter on some index set λ. Assume that
V ⊆ Fλ/D. Then V can not strongly shatter image of
embedding of X in limit product structure.

Note that it can be seen that for every finite number
n the restriction of the ultraproduct system to every
subset of size n of the domain is isomorphic to restric-
tions of almost all members of the product to some finite
subsets of size n of their domains. More precisely, for
every finite number n, the restriction of the ultraprod-
uct system to every subset of size n of the domain is
isomorphic to the restrictions of almost all (w.r.t ultra-
filter) members of the product to some finite subsets of
size n of their domains.

3 Discussion

In a related direction to the above results, one may con-
sider model theoretical aspects related to combinatorial
configurations encoded in systems as well as first order
expressibility of extremal notions. Note that model the-
oretical tools are proven (in works such as [6]) to be very
useful in constructing and analysing systems which for-
bid certain configurations such as order. Such systems
include many nice geometrical examples. One can con-
sider an analogue of compression scheme and Theorem
4 in this context which is called ”uniform definability
over finite sets”. One can also explore their impacts on
geometrical complexities and also give several examples
in different situations.

References

[1] B. Bollobas and A. J. Radcliffe. Defect sauer results.
J. Comb. Theory, Ser. A, 72(2):189208, 1995.

[2] B. Gartner and E. Welzl. Vapnik-chervonenkis di-
mension and pseudo-hyperplane arrangements. Discrete
and Computational Geometry (DCG), 12:399432, 1994.

[3] J. Goodman, J. O’Rourke Handbook of Discrete and
Computational Geometry, Chapman Hall-CRC, 2004.

[4] H. Johnson Some new maximum VC classes
https://arxiv.org/abs/1309.2626.

[5] D. Kuzmin and M. K. Warmuth. Unlabeled compres-
sion schemes for maximum classes. Journal of Machine
Learning Research, 8:20472081, 2007.

[6] R. Livni, P. Simon Honest Compressions and Their Ap-
plication to Compression Schemes, Proceedings of the
26th Conference on Learning Theory (COLT) , 2013.

[7] A. Mofidi On some dynamical aspects of NIP theories,
Arch. Math. Logic, 2017, to appear.

[8] S. Moran, M. Warmuth, Labeled compression schemes
for extremal classes, https://arxiv.org/abs/1506.00165,
2016.

[9] S. Moran, A. Yehudayoff Sample Compression Schemes
for VC Classes. J. ACM 63(3): 21:1-21:10 ,2016.

[10] N. Sauer. On the density of families of sets. J. Comb.
Theory, Ser. A, 13:145147, 1972.

[11] S. Shelah. A combinatorial problem; stability and order
for models and theories in infinitary languages. Pac. J.
Math, 41:247261, 1972.

[12] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probability. Theory Probab. Appl, 16:264280, 1971.

80

Amirkabir University of Technology, Tehran, February 27, 2018

Covering Points by Triangles

Sima Hajiaghaei Shanjani∗ Alireza Zarei†

Abstract

Given a set of n points on the plane, the problem con-
sidered in this paper are to compute two triangles that
cover all the points and the largest triangle or total area
of triangles is minimized. First, we study the case of two
isosceles triangles with fixed apex angles. For this case,
we propose an exact algorithm running in O(n5 log n)
time to compute triangles with the minimum largest or
triangles with the minimum total area, and propose a
PTAS in O(ε−1n2 log3 n) time for this problem. Then
we consider the case of arbitrary triangles, and present
an algorithm to compute a (4 + ε) approximation of the
minimum total area triangles in O(ε−6n log3 n) time and
a PTAS for the problem of minimizing the largest area of
the triangles. Finally, we show that, having a constant
factor approximation of the longest side of the optimum
solution, for minimizing the total area of the triangles
and minimizing the largest area of them PTAS exist.

1 Introduction

Covering problems are primary concerns in computa-
tional geometry. In one classic type of these problems,
for a given set of points, the goal is to find a set of one
or more geometric object that encloses the points, while
optimizing an objective function such as area, perime-
ter, surface area, or volume. Here the location of the
geometric object is to be computed as part of the goal.
Minimum Enclosing Circle and Minimum Enclosing Box
are well-known problems of this type. Many covering
problems have arisen in this context of applications like
Geographic Information System (GIS) and wireless net-
works [1]. This includes, the problem of covering a set of
points by two rectangles, known as two-rectangle Cover-
ing, seeks to minimize the area of the largest rectangles
or the total area of the rectangles, which has been stud-
ied extensively for different constraints [3, 9, 10].
Related work: To our knowledge, this is the first

time that the problem of covering points by more than
one triangle has been studied. However, there are two
different threads of research that relate to this problem.
The first thread relates to covering points with one tri-
angle, i.e. variants of the Minimum Enclosing Triangle

∗Departments of Computer Science, University of Victoria,
Sima@uvic.ca
†Department of Mathematical Science, Sharif University of

Technology , zarei@sharif.edu

problem [2, 5, 6, 7, 8]. The second thread relates to cov-
ering points with more than one object, e.g. covering
points with two disjoint arbitrary rectangles with the
minimum total area [3, 1, 14, 13, 11, 12, 9, 10].

two axis-parallel rectan-
gles

minimize largest area
or total area

O(n log n),
2000 [13]

two parallel and equal size
squares

minimize largest area
O(n2), 1996
[11]

two arbitrarily oriented
squares

minimize largest area
O(n3 log2 n),
2000 [12]

two parallel rectangles minimize largest area
O(n3), 2009
[3]

two disjoint rectangles minimize largest area
O(n2 log n),
2011 [10]

two disjoint and parallel
rectangles

minimize largest area
O(n2 log n),
2011 [10]

two disjoint rectangles
(one axis-aligned and the
other arbitrarily oriented)

minimize largest area
O(n2 log n),
2011 [10]

two arbitrarily oriented
rectangles

(1 + ε)−approx mini-
mize total area

O(ε−6n log3 n),
2010 [9]

Table 1: Related results to covering points by two object

• First Thread: Minimum Enclosing Triangle The
problem of finding the smallest enclosing triangle has
been studied widely with various constraints and goals.
Examples of this category are Minimum Area Enclosing
Triangle [5], the Minimum Enclosing Area Triangle with
a Fixed Angle [6], and the Minimum Isosceles Enclosing
Triangle with a Fixed Apex Angle [8]. In 1985, the prob-
lem of covering points with a triangle appeared in the
form of enclosing a convex polygon with the minimum
area triangle [15]. The best known algorithm, proposed
in [5], runs in linear time in the size of the polygon
and can be applied on point set of size n in O(n log n)
time, is proposed in [5]. In [8, 6, 7], several variants of
this problem were studied, particularly where the en-
closing triangle is an isosceles triangle with fixed apex
angle. For this problem, all optimum triangles for a set
of points were computed in O(n log n) time and for a
simple polygon the running time was O(n) .
• Second Thread: Covering Points with more than One
Object Different types of objects have been studied for
the problem of covering points with more than one ob-
ject, particularly rectangles. See [1] for a comprehen-
sive survey that includes a list of these problems and
see [14] for a PhD thesis on this topic. In 2000, Two-
Rectangle covering problem was studied for the case, in
which the rectangles are axis-aligned, and an algorithm
in O(n log n + nd−1) time was proposed for the prob-
lem in d-dimensional space [13]. Many other versions

81

ICCG 2018: 1st Iranian Conference on Computational Geometry

of these problems exist, and Table 1 summarize the re-
sults that relate to covering with squares and rectangles,
such as covering with two parallel rectangles, two par-
allel squares, and two arbitrary oriented squares.
Our Contribution: In this paper we study covering
problems with two triangles for a given point set. The
goals of the problem is to minimize the area of largest
triangles or to the total area of two triangles. Different
constraints also can be considered for these problems,
such as triangles with a fixed angle or isosceles triangles.
Approximation and exact algorithms are found for the
problem of covering a set point by two isosceles triangles
with a fixed apex angle and the problem of covering
points by two arbitrary triangles.
The problem of finding an exact solution for covering a
set of points with two arbitrary triangles seems a dif-
ficult problem in terms of time complexity. Thus, we
are interested in approximate solutions and exact con-
strained solutions.
First, we propose an exact algorithm for the prob-
lem of covering points with two isosceles triangles with
fixed apex angles and minimum total/largest area in
O(n5 log n) time. Then we give a PTAS that solves
the problem for the case of minimizing total area in
O(ε−1n4) time, then a PTAS for minimum largest area
in O(ε−1n2 log3 n) time. For the case of arbitrary trian-
gles, we first provide a (4 + ε)-approximation algorithm
in O(ε−6n log3 n) time, which is mainly based on [9].
Then we give a PTAS to minimize the largest area in
O(ε−3n2 log2 n) time and for the case of minimizing to-
tal areas a PTAS in O(ε−3n4) time. Finally, if we have
a constant factor approximation of the longest side of
the optimum solution, we provide a PTAS algorithm in
O(ε−5n2) time to minimize total area and a PTAS in
O(ε−3 log2 ε−1n2) time to minimize the largest area.

2 Isosceles Triangles with fixed apex angle

In this section, we study the problem where the cov-
ering triangles are not arbitrary triangles, but isosceles
triangles with fixed apex angles.

Theorem 1 Given a set P of points in the plane and
a positive angle α < π, the two enclosing isosceles tri-
angles with apex alpha with the minimum total area can
be computed in O(n5 log n) time.

Proof. Each side of the minimum enclosing triangles
should be in contact with at least one point of P; Oth-
erwise, the size of the triangle can be reduced. In order
to have this property in the first triangle, consider two
points pi and pj on the equal sides of the triangle. Then,
the third point should be chosen to lie on the base(the
edge opposite the apex) of the triangle. Consider the
locus of apices of minimal α-wedges for P that has pi
and pj on it’s sides. This locus is a subset of the locus

Figure 1: Locus of all points at which a given pipj sub-
tends a fixed angle α

of all points at which a given segment pipj subtends a
fixed angle α, which is a circular arc with the segment
as a chord (See Figure 1).
For the third point, at each location of the apex, any
point that is inside the minimal α-wedge can be chosen
to lie on the base of the triangle. Then, for a chosen
points as a third points, compute the minimum enclos-
ing isosceles triangle of the points that are inside of these
three edges (i.e. sides of the α-wedge and a base). Note
that the triangle that formed based on these three edges
is not necessarily the minimum area triangle, which cov-
ers all the points that lie inside the triangle. Then, com-
pute the points that lie outside of the first minimum
enclosing triangle, and find the minimum area triangle
that covers the rest of the points.
Time analysis: There is a quadratic pair of points to
choose as pi and pj to lie on equal sides of the first tri-
angle. Then, we should find the number of times that
the subset of points lying inside the α-wedge is differ-
ent, while the location of the apex changes on the cir-
cular arc. This number is linear, as each point comes
to the inside of α-wedge and goes out at most once for
each circular arc. So, there is a linear different subset
of points for each pair of pi and pj . The number of
choices for the third point is also linear, as the number
of the points in each subset is linear. Therefore, there
are O(n4) different subsets of points for the first trian-
gle. Computing minimum enclosing isosceles triangle of
these points takes O(n log n) time. Therefore, the time
complexity of this algorithm is O(n5 log n). �

Theorem 2 Given a set P of points in the plane and
a positive angle α < π, a (1 + ε)-approximation of the
two enclosing isosceles triangles with apex alpha with
the minimum total area can be computed in O(ε−1n4)
time.

Proof. Consider D a set of O(δ−1) uniformly spread
directions on the unit circle, where δ = θ(ε). In such a
way that for any direction d on the unit circle there are
some directions d∗ ∈ D , which the angle between d and
d∗ is less than δ.

82

Amirkabir University of Technology, Tehran, February 27, 2018

Figure 2: Different possible triangles

Assume T is one of the triangles in optimum solution
and the direction of its base is d. First, we want to
show that there is a triangle T ′ with a side in d∗ ∈ D
direction that contains T and approximates the area of
it; i.e., area(T ′) ≤ (1+ε)area(T). Then,we should show
how to compute such a triangle T ′.
For showing that the T ′ exists, the reasoning is similar
to the analysis of PTAS algorithm for computing the
smallest enclosing triangle a set of points in [8]. Con-
sider the smallest enclosing isosceles triangle of T with
apex angle α and the base direction d∗ where |~d− ~d∗| ≤
δ. Let h is the height of T and h′ is the height of T ′.

Then, we have that h′ ≤ h((2−cosα) sin δ
sinα +cos δ). By con-

sidering δ = ε sinα
2−cosα , we have h′ ≤ h(cos δ+ε) ≤ h(1+ε).

So, as the triangles are similar and h′ ≤ h(1+ε) the area
of T ′ is at most (1 + ε) area of T .
For finding such triangles to cover all the points, Con-
sider set of D directions for each point p in P . Compute
all optimal enclosing isosceles triangles with apex angle
α and base directions in D, which p is on the base of
this triangle (Figure 2). For each of these optimal trian-
gles compute the points that lies outside of the triangle,
and compute a (1 + ε)- approximation solution for this
subset of points by using the PTAS in [8].
Time analysis: There is a linear number of points and
O(δ−1) directions for each point, where δ = θ(ε). For
each base direction of first triangle there is a quadratic
number of possibilities for different optimal triangles.
This is because, each side is limited by a point and the
number of these points is linear. So, there are O(ε−1n3)
different choices for the first triangle. For computing
the points that lie outside of the first triangle we can
do it easily in linear time. Besides, computing a (1 +
ε)-approximation of the solution for the points that lie
outside of the first triangle takes O(n) time. So, the
total time complexity of this algorithm is O(ε−1n4). �

Corollary 2.1 Given a set P of points in the plane
and a positive angle α < π, a (1 + ε)-approximation
of the two enclosing isosceles triangles with apex alpha
with the minimum largest area can be computed in
O(ε−1n2 log3 n) time.

Proof. The algorithm for minimizing the largest trian-
gle is similar to the one for minimizing total area of tri-
angles. In order to minimize the largest area we do not

Figure 3: Triangle T ′ with a side in d∗ ∈ D, and T ′

contains T and approximates the area of it

need to consider all the possibilities for the first triangle.
For one particular point and one direction d∗ ∈ D, first
we will sort all the point in the perpendicular directions
of the triangle’s sides. Then, instead of checking all the
O(n2) possibilities, we can use binary search for both
sides to minimize the largest area. Thus, the running
time of this algorithm reduces to O(ε−1n2 log3 n). �

3 Arbitrary Triangles

Theorem 3 Given a set P of points in the plane, a
(4 + ε)-approximation of the two enclosing arbitrary tri-
angles with the minimum total area can be computed in
O(ε−6n log3 n) time.

Proof. In [9] a (1 + ε)- approximation algorithm pro-
posed for the problem of covering points with two ar-
bitrary oriented rectangles. We want to show how the
answer of that problem can help us to find a good ap-
proximation for the problem of covering points by two
triangles. let R′1 and R′2 are the optimum solution for
the problem of covering points by rectangles, and re-
spectively P1 and P2 are the subset of point that they
cover. Compute the minimum enclosing triangles of R′1
and R′2, and call them T ′1 and T ′2. Next, we want to
show that the total area of T ′1 and T ′2 is at most (4 + ε)
of area of the total area of optimum solution.
The area of the smallest enclosing triangle of a rectan-
gles is twice the area of rectangle. On the other hand
R′1 and R′2 are (1 + ε)-approximation of the two R1 and
R2 rectangles in optimum solution. Now, we want to
show that the total area of optimum solution T1 and
T2 for the problem of covering points by two arbitrary
triangles is at least half of the total area of R1 and R2.
This is because, if the total area of T1 and T2 is smaller,
then minimum enclosing rectangles of T1 and T2 are
better choices than R1 and R2 for covering points by
rectangles. �

Theorem 4 Given a set P of points in the plane and
a positive angle 0 < θ, a (1 + ε)-approximation of the
two enclosing arbitrary triangles with the minimum to-
tal area while all the angles are grater than θ can be
computed in O(ε−3n4) time.

Proof. The idea of this algorithm is similar to the the-
orem 2, but the analysis of the approximation ratio is
not the same.

83

ICCG 2018: 1st Iranian Conference on Computational Geometry

Consider D a set of O(δ−1) uniformly spread directions
on the unit circle, where tan δ = θ(ε). In such a way
that for any direction d on the unit circle there are some
directions d∗ ∈ D , which the angle between d and d∗ is
less than δ.
Assume T is one of the triangles in optimum solution
and the direction of its base is d. First, we want to show
that there is a triangle T ′ with all sides on directions
d∗ ∈ D that contains T and approximates the area of it.
For showing that the T ′ is exists, consider triangle T in
Figure 3, and triangle T1, which is the smallest covering
triangle of T with base direction d∗ where |~d − ~d∗| ≤ δ
and the direction of B̄C is d.
Let B′ is the intersection point of ĀB direction and the
direction d′, which the angle between d and C̄B is less
than δ. Triangle AB′C is a triangle that has a side in
direction d′, and we will show that area(T1) ≤ (1 +
ε)area(T). Let h is the height of T and h1 is the height
of T ′. Then, we have that, h1 = ¯AB′. cosB1 = (ĀB +

¯BB′). cosB1 = h+ ¯BB′. cosB1 = h+
¯B′Q

sin (A+C) . cosB1

= h + tan δ.C̄Q. cosB1

sinB ≤ h + tan δ.C̄B. cosB1

sinB ≤ h +
tan δ.h. cosB1

cosB2 sinB
As B2 ≤ B, so cosB2 ≥ cosB, and
h1 ≤ h+ tan δ.h

1/2 sin 2B ≤ h(1 + ε1) if tan δ ≤ ε1 sin 2θ
2

Therefore, we have h1 ≤ h(1 + ε1) and area(T1) ≤ (1 +
ε1)area(T).
Next, we can have same reasoning for T2 on AB′ side
of T1, and T ′ = T3 on AC side of T2, when tan δ =
Θ(ε2) and tan δ = Θ(ε3) respectively. Then, by ad-
justing ε1, ε2, ε3, we can have a T ′ triangle such that
area(T ′) ≤ (1 + ε)area(T) and tan δ = Θ(ε).
For computing all the triangles in D directions, simi-
lar to the Theorem 2, consider all directions in D for
each point. For each side, there are O(1/ε) directions,
and for each direction, there are O(n) points. Thus, for
each point there are O(ε−3n2) different possible trian-
gles. Therefore, the total running time of the algorithm
in order to minimize the total area of the triangles is
O(ε−3n4). �

Corollary 4.1 Given a set P of points in the plane
and a positive angle 0 < θ, a (1 + ε)-approximation of
the two enclosing arbitrary triangles with the minimum
largest area while all the angles are grater than θ can be
computed in O(ε−3n2 log2 n) time.

Theorem 5 Given a set P of points in the plane and
a constant factor approximation of the longest side of
the optimum solution, a (1 + ε)-approximation of the
two enclosing arbitrary triangles with the minimum total
area can be computed in O(ε−5n2) time.

Proof. If we have ∆, which is a constant factor approx-
imation of the longest side of the triangles, we do not
need to consider all the O(ε−2n2) possible triangles for
each direction of each point. Instead, it is enough to

consider a grid with size O(ε−1∆) on base direction for
each point and direction. Then, for each side there are
O(ε−2) possible choices, and in total O(ε5) choices for
each point. The rest of the algorithms is similar to the
algorithm in Theorem 2, i.e. find the points lie outside
of the first triangle, and find (1+ε)-approximation of the
minimum area covering triangles of them in O(n) time.
Therefore, the total running time of this algorithm is
O(ε−5n2). �

Corollary 5.1 Given a set P of points in the plane and
a constant factor approximation of the longest side of
the optimum solution, a (1+ε)-approximation of the two
enclosing arbitrary triangles with the minimum largest
area can be computed in O(ε−3 log2 ε−1n2) time.

References

[1] P. Aggarwal and M. Sharir Efficient algorithms for ge-
ometric optimization. ACM Comput. Surveys 1998.

[2] B. Bhattacharya and A. Mukhopadhyay On the min-
imum perimeter triangle enclosing a convex polygon.
JCDCG, 2002.

[3] C. Saha and S. Das Covering a set of points in plane
using two parallel rectangles. ICCTA, 2009.

[4] S.Har-peled No coreset, no cry. In 24th Conf. Found.
Soft. Tech. Theoretical Computer Science, 2004.

[5] J. O Rourke, A. Aggarwal, S. Maddila and M. Baldwin
An optimal algorithm for finding minimal enclosing tri-
angles. Journal of Algorithms, 1986.

[6] P. Bosea and J. L. De Carufel Minimum enclosing area
triangle with a fixed angle. CCCG, 2010.

[7] P. Bose and J. L. De Carufel Isoperimetric triangular
enclosure with a fixed angle. CCCG 2011.

[8] P. Bose, C. Seara, S. Sethia On computing enclosing
isosceles triangles and related problems. International
Journal of Computational Geometry and Application,
2009.

[9] S. Har-Peled and N. Kumar On covering points by
rectangles. Note, 2010

[10] S. Kim, S. Bae, H. K. Ahn Covering a point set by two
disjoint rectangles. International Journal of Computa-
tional Geometry and Applications, 2011.

[11] J.W. Jaromczyk and M. Kowaluk Orientation indepen-
dent covering of point sets in R2 with pairs of rectangles
or optimal squares. EuroCG, 1996.

[12] M. Kats, K. Kedem, M.Segal Discrete rectilinear 2-
center problem. computational geometry theory and ap-
plications, 2000.

[13] S. Bespamyatnikh and M. Segal Covering a set of points
by two axis-parallel boxes. Inform. journal Information
Processing Letters, 75:95100, 2000.

[14] M. Segal Covering point sets and accompanying Prob-
lems. Ph.D. dissertation, Ben-Gurion University, 1999.

[15] V. Klee and M. Laskowski Finding the smallest tri-
angle containing a given convex polygon. Algorithms,
6:359375, 1985.

84

	preamble
	proc
	Conference Program
	Tuesday February 27
	Invited talk
	Geometry and Topology in Trajectory Analysis

	Session 1
	Connected Guards in a Simple Polygon
	Fault Tolerancy of Continuous Yao Graph
	A Theoretical Proof of Angular Random Walk
	Answering Time-Windowed Queries of Contiguous Hotspots
	On the Generalized Minimum Spanning Tree in the Euclidean Plane

	Session 2
	Routing in Well-Separated Pair Decomposition Spanners
	Progressive Algorithm For Euclidean Minimum Spanning Tree
	A New Construction of the Greedy Spanner in Linear Space
	Approximate Hotspots of Orthogonal Trajectories
	Knowledge Representation for the Geometrical Shapes

	Session 3
	Increasing-Chord Planar Graphs for Points in Convex Position
	Kinetic Nearest Neighbor Search in Black-Box Model
	Exploring Rectangular Grid Environments
	Shortest Path Problem among Imprecise Obstacles
	On Some VC-combinatorial notions in computational geometry

