
The Third Iranian Conference on

Computational Geometry

(ICCG 2020)

Proceedings

Department of Mathematics and Computer Science
Amirkabir University of Technology

Tehran, Iran, February 16, 2020

Compilation copyright © 2020 Zahed Rahmati

Copyright of individual contributions remains with the authors

ii

Foreword

The third Iranian Conference on Computational Geometry was held on February 16, 2020 at the
Department of Mathematics and Computer Science of the Amirkabir University of Technology,
in Tehran. The goal of this annual, international conference is to bring together students and
researchers from academia and industry, in order to promote research in the fields of combinatorial
and computational geometry.

This volume of proceedings contains a selection of nine refereed papers and an invited talk that
were presented during the conference, in four sessions. I would like to thank my pc co-chair Mo-
hammad Farshi, the invited speaker Alexander Wolff, all the pc members, and members of the local
organizing committee (Sepehr Moradi and Simin Yazdandoost). I also want to thank the spon-
sors: Amirkabir University of Technology for financial supports and Islamic World Science Citation
Center (ISC) for indexing the conference (#ISC 98190-51487).

Zahed Rahmati
General Chair

iii

Invited Speaker

Alexander Wolff University of Würzburg, Germany

General Chair

Zahed Rahmati Amirkabir University of Technology

Program Committee

Mohammad Ali Abam Sharif University of Technology, Iran
Davood Bakhshesh University of Bojnord, Iran
Mansoor Davoodi Institute for Advanced Studies in Basic Sciences, Iran
Marzieh Eskandari Al-Zahra University, Iran
Mohammad Farshi Yazd University, Iran (co-chair)
Amin Gheibi Amirkabir University of Technology, Iran
Xavier Goaoc Université de Lorraine, France
Anil Maheshwari Carleton University, Canada
Saeed Mehrabi Carleton University, Canada
Debajyoti Mondal University of Saskatchewan, Canada
David Mount University of Maryland, USA
Mostafa Nouri Baygi Ferdowsi University of Mashhad, Iran
Martin Nöllenburg Vienna University of Technology, Austria
Zahed Rahmati Amirkabir University of Technology, Iran (co-chair)
André van Renssen The University of Sydney, Australia
Don Sheehy North Carolina State University, USA
Farnaz Sheikhi K. N. Toosi University of Technology, Iran
Carola Wenk Tulane University, USA
Alexander Wolff Universität Würzburg, Germany
Alireza Zarei Sharif University of Technology, Iran
Hamid Zarrabi-Zadeh Sharif University of Technology, Iran

Local Organizers

Sepehr Moradi Amirkabir University of Technology, Iran
Zahed Rahmati Amirkabir University of Technology, Iran, (Chair)
Simin Yazdandoost Amirkabir University of Technology, Iran

iv

Conference Program

Sunday February 16 1

Invited talk 1
1 Drawing Graphs and Hypergraphs in 2D and 3D

Alexander Wolff

Session 1 5
5 Angle-Monotonicity of Delaunay Triangulation

Davood Bakhshesh and Mohammad Farshi
9 Never Absent for Long and Never Far Away

Ali Gholami Rudi and Fatemeh Golchin
15 Competitive Strategies for Walking in Streets for a Simple Robot Using Local Information

Azadeh Tabatabaei, Mohammad Aletaha and Mohammad Ghodsi

Session 2 21
21 On Connecting with Neighborhoods: Complexity and Algorithms

Arash Ahadi and Alireza Zarei
25 Planar Euclidean TSP via Snowflake Tree

Sepideh Aghamolaei and Mohammad Ghodsi
29 Frechet Distance Queries in Trajectory Data

Joachim Gudmundsson, André van Renssen, Zeinab Saeidi and Sampson Wong

Session 3 33
33 Path Planning with Objectives Minimizing Length and Maximizing Clearance

Mansoor Davoodi Monfared and Maryam Sanisales
37 On the expected weight of the theta graph on uncertain points

Behnam Iranfar, Mohammad Farshi and Amir Mesrikhani
41 Surrounded k-Center and Applications in MapReduce

Sepideh Aghamolaei and Mohammad Ghodsi

v

vi

ICCG 2020, Tehran, February 16, 2020

Drawing Graphs and Hypergraphs in 2D and 3D

Alexander Wolff∗

In this talk we review the basic concepts and the
methodology of Graph Drawing, which is an active re-
search area in the intersection of Graph Theory, Com-
putational Geometry, and Information Visualization.
Graph Drawing is about finding algorithms that map
abstract, combinatorial objects (graphs or hypergraphs)
to drawings, that is, “tangible” geometric objects. The
goal is to find algorithms that guarantee a provable geo-
metric quality measure in the worst case. For example,
there are algorithms that draw any planar graph on a
grid whose size is quadratic in the number of vertices
of the graph [7, 13]. Other than in areas such as In-
formation Visualization, the evaluation is usually not
task-driven.

The Graph Drawing problem has numerous incarna-
tions: supported graph classes (e.g., trees, outerplanar,
planar, or bipartite graphs), drawing styles (e.g., or-
thogonal, straight-line, Bézier), quality measures (e.g.,
number of bends, number of crossings, crossing resolu-
tion), the embedding space (2D or 3D), and the type
of representation (node–link diagrams, contact or inter-
section representations). Often, optimizing one measure
leads to drawings that are bad in other measures. There
is a lack of algorithms that are “pretty good” or at least
“not too bad” in many aspects.

There is a (surprisingly small) set of standard tech-
niques for drawing graphs. For example, if the graph
class for which we want to design a drawing algorithm
has a recursive definition, an obvious approach is to
construct drawings recursively. A prominent example
are orthogonal straight-line drawings of binary trees. It
turns out that they can be drawn in a compact way; on
a grid of size O(n log n), where n is the number of ver-
tices of the given tree [6]. Similarly, if a graph class has
an inductive definition, we may try to draw the given
graph of that class inductively. Such an approach is
used to show that every n-vertex planar 3-tree can be
drawn using 2n− 4 segments [8]. Finally, there are two
at first glance very different approaches for drawing pla-
nar graphs on a grid of quadratic size. One approach,
the shift algorithm [7], constructs the drawing incremen-
tally; the other approach [13] counts some combinatorial
objects (using a Schnyder wood) and then turns the re-
sulting numbers into coordinates. A more careful analy-
sis, however, reveals structural similarities between the

∗Institute of Computer Science, University of Würzburg, Ger-
many. alexander.wolff@uni-wuerzburg.de

two approaches.
Topics that have received considerable attention over

the last few years are simultaneous embedding, mor-
phing of graphs, drawings with large crossing angles,
drawings of beyond-planar graphs, and visual complex-
ity. The visual complexity of a drawing is measured by
the number of geometric objects needed to compose or
cover the drawing. For example, the segment number
of a planar graph is the smallest number of straight-line
segments whose union represents a straight-line drawing
of the given graph [8]. The arc number [14] is defined
accordingly with respect to circular-arc drawings, which
often allow for less complex or more compact represen-
tations. Another recent generalization [12] are variants
of the segment number for nonplanar graphs, either ad-
mitting crossings or embedding in 3D. The plane cover
number [3, 5] asks for the smallest number of planes
needed to cover a straight-line drawing of a given graph
in 3D. Accordingly, one can define the line cover num-
ber in 2D (for planar graphs) or in 3D (for arbitrary
graphs), which is obviously upperbounded by the corre-
sponding segment number. Also weak versions of these
numbers have been studied where only the vertices of a
crossing-free straight-line drawing of the graph need to
covered. While it is not hard to see that any outerplanar
graph has weak line cover number 2 [4], even some cubic,
3-connected, bipartite planar graphs have unbounded
weak line cover number (exceeding 3

√
n, where n is the

number of vertices) [9]. On the other hand, every 4-
connected plane triangulation on n vertices has weak
line cover number at most

√
2n [11].

Recently, there is some effort to better understand
the drawing of graphs and hypergraphs in 3D. For ex-
ample, we now know that every graph has a contact
representation in 3D where vertices are represented by
pairwise interior-disjoint convex polygons and edges by
vertex–vertex contacts between the corresponding poly-
gons [10]. (Unfortunately, our construction needs expo-
nential space.) If we insist that the (convex) polygons
that correspond to two adjacent vertices must share an
edge rather than a vertex, not all graphs can be repre-
sented. For example, it is not difficult to see that K5

does not admit a representation with convex quadrilat-
erals. On the other hand, K4,4 admits such a repre-
sentation, and there is an unbounded family of graphs
with n vertices and 6n − o(n) edges that admit edge-
contact representations with convex polygons in 3D [1].
Hence, such graphs can be considerably denser than pla-

1

3rd Iranian Conference on Computational Geometry

nar graphs.
For hypergraphs, the situation is difficult even in the

setting with vertex–vertex contacts. For example, the
Fano plane (which is the smallest Steiner triple system
S(2, 3, 7)) and the Steiner triple system S(2, 3, 9) ad-
mit a representation where vertices are represented by
points and hyperedges by (pairwise interior-disjoint) tri-
angles connecting the corresponding points.

On the other hand, the 3-uniform complete hyper-
graph with six (or more) vertices does not admit such
a representation [2]. This can be shown by analyzing
the link graph of an arbitrary vertex v of this hyper-
graph. This is the graph that lives on the boundary
of a small sphere around v. It has a vertex for each
vertex other than v and an edge for each hyperedge in-
cident to v. This graph must be planar, but it would
have too many edges for large 3-uniform complete hy-
pergraphs. Mostly with the same technique, one can
show that no Steiner quadruple systems S(3, 4, n) ad-
mits a representation with touching convex quadrilat-
erals [10]. Now consider the smallest projective plane
PG(3) (= S(2, 4, 13)). It has 13 vertices and 13 hy-
peredges of size 4. We don’t know whether it admits
a representation with (convex) quadrilaterals or with
tetrahedra.

An earlier version of this talk was joint work with
André Schulz [15].

References

[1] Elena Arseneva, Linda Kleist, Boris Klemz,
Maarten Löffler, André Schulz, Birgit Vogtenhu-
ber, and Alexander Wolff. Representing graphs by
polygons with edge contacts in 3D. In Steven Chap-
lick, Philipp Kindermann, and Alexander Wolff,
editors, Proc. 36th European Workshop on Com-
putational Geometry (EuroCG’20), pages 53:1–8,
2020.

[2] Johannes Carmesin. Embedding simply connected
2-complexes in 3-space – I. A Kuratowski-type
characterisation. ArXiv report, 2019. URL: http:
//arxiv.org/abs/1709.04642.

[3] Steven Chaplick, Krzysztof Fleszar, Fabian Lipp,
Alexander Ravsky, Oleg Verbitsky, and Alexander
Wolff. Drawing graphs on few lines and few planes.
In Yifan Hu and Martin Nöllenburg, editors,
GD 2016, volume 9801 of LNCS, pages 166–180.
Springer, 2016. URL: http://arxiv.org/abs/
1607.01196, doi:10.1007/978-3-319-50106-2\
_14.

[4] Steven Chaplick, Krzysztof Fleszar, Fabian Lipp,
Alexander Ravsky, Oleg Verbitsky, and Alexan-
der Wolff. Drawing graphs on few lines and few

planes. In Yifan Hu and Martin Nöllenburg, ed-
itors, Proc. 24th Int. Symp. Graph Drawing &
Network Vis. (GD’16), volume 9801 of LNCS,
pages 166–180. Springer, 2016. doi:10.1007/
978-3-319-50106-2_14.

[5] Steven Chaplick, Krzysztof Fleszar, Fabian Lipp,
Alexander Ravsky, Oleg Verbitsky, and Alexander
Wolff. The complexity of drawing graphs on few
lines and few planes. In Faith Ellen, Antonina
Kolokolova, and Jörg-Rüdiger Sack, editors, WADS
2017, volume 10389 of LNCS, pages 265–276.
Springer, 2017. URL: http://arxiv.org/abs/
1607.06444, doi:10.1007/978-3-319-62127-2\
_23.

[6] Pierluigi Crescenzi, Giuseppe Di Battista, and
Adolfo Piperno. A note on optimal area algo-
rithms for upward drawings of binary trees. Com-
put. Geom. Theory Appl., 2(4):187–200, 1992. doi:
10.1016/0925-7721(92)90021-J.

[7] Hubert de Fraysseix, János Pach, and Richard Pol-
lack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990. doi:10.1007/
BF02122694.

[8] Vida Dujmović, David Eppstein, Matthew Suder-
man, and David R. Wood. Drawings of planar
graphs with few slopes and segments. Comput.
Geom. Theory Appl., 38(3):194–212, 2007. doi:
10.1016/j.comgeo.2006.09.002.

[9] David Eppstein. Cubic planar graphs that can-
not be drawn on few lines. In Proc. 35th Int.
Symp. Comp. Geom. (SoCG’19), volume 129 of
LIPIcs, pages 32:1–32:15, 2019. doi:10.4230/
LIPIcs.SoCG.2019.32.

[10] William Evans, Paweł Rzążewski, Noushin Saeedi,
Chan-Su Shin, and Alexander Wolff. Represent-
ing graphs and hypergraphs by touching polygons
in 3D. In Daniel Archambault and Csaba D.
Tóth, editors, Proc. 27th Int. Symp. Graph Draw-
ing & Network Vis. (GD’19), volume 11904 of
LNCS, pages 18–32. Springer, 2019. doi:10.1007/
978-3-030-35802-0_2.

[11] Stefan Felsner. 4-connected triangulations on few
lines. In Daniel Archambault and Csaba D.
Tóth, editors, Proc. 24th Int. Symp. Graph
Drawing & Network Vis. (GD’16), volume
11904 of LNCS, pages 395–408. Springer, 2019.
URL: https://arxiv.org/abs/1908.04524, doi:
10.1007/978-3-030-35802-0_30.

[12] Yoshio Okamoto, Alexander Ravsky, and Alexan-
der Wolff. Variants of the segment number of

2

a graph. In Daniel Archambault and Csaba D.
Tóth, editors, Proc. 27th Int. Symp. Graph Draw-
ing & Network Vis. (GD’19), volume 11904 of
LNCS, pages 430–443. Springer, 2019. doi:10.
1007/978-3-030-35802-0_33.

[13] Walter Schnyder. Embedding planar graphs on the
grid. In David S. Johnson, editor, Proc. 1st ACM-
SIAM Symp. Discrete Algorithms (SODA’90),
pages 138–148, 1990. URL: https://dl.acm.org/
citation.cfm?id=320191.

[14] André Schulz. Drawing graphs with few arcs. J.
Graph Alg. Appl., 19(1):393–412, 2015. doi:10.
7155/jgaa.00366.

[15] André Schulz and Alexander Wolff. Survey on
graph and hypergraph drawing. In Maarten Löf-
fler, Anna Lubiw, Saul Schleimer, and Erin Mori-
arty Wolf Chambers, editors, Computation in Low-
Dimensional Geometry and Topology (Dagstuhl
Seminar 19352), volume 9 (number 8) of Dagstuhl
Reports, pages 87–89. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/
DagRep.9.8.84.

3

4

ICCG 2020, Tehran, February 16, 2020

Angle-Monotonicity of Delaunay Triangulation

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

Given an angle γ > 0, a geometric path (v1, . . . , vk) is
called angle-monotone with width γ if, for any two in-
tegers 1 ≤ i, j < k, the angle between the two vectors−−−→vivi+1 and −−−−→vjvj+1 is at most γ. Let S be a set of n
points in the plane. A geometric graph G with vertex
set S is called angle-monotone with width γ, if there
exists an angle-monotone path with width γ between
every pair of vertices of G. In this paper, we show that
the Delaunay triangulation of a given point set in the
plane is not necessarily angle-monotone with width α,
for 0 < α ≤ 140◦. This makes significant progress to-
wards solving an open problem posed by Bonichon et
al. (Bonichon et al., Gabriel triangulations and angle-
monotone graphs: Local routing and recognition, Graph
Drawing and Network Visualization, 2016).

1 Introduction

Let S be a set of points in the plane. A weighted graph
G = (S,E) is called geometric, if any edge (p, q) ∈ E is
the straight line between p and q and the weight of the
edge (p, q) is the Euclidean distance between p and q
denoted by |pq|. Let t > 1 be a real number. The graph
G is called a t-spanner for S, if for every pair of points
p, q ∈ S, there exists a path Q between p and q in G
such that |Q| ≤ t|pq|, where |Q| is called the length of
Q which is the sum of the weight of all edges of Q. The
smallest value of t such that G is a t-spanner for S is
called the stretch factor (dilation) of G.

In 2014, Dehkordi et al. [2] introduced the concept
of angle-monotone graphs as a new family of geometric
graphs that have an angle-monotone path as a “good”
path between each pair of vertices. A geometric path
(v1, . . . , vn) is called angle-monotone, if there exists a
90◦ closed wedge such that for each 1 ≤ i < n, the
vector −−−→vivi+1 of the edge (vi, vi+1) lies in this wedge. A
geometric graph is called angle-monotone, if for any two
vertices, there is an angle-monotone path in the graph
between them. In 2016, Bonichon et al. [1], generalized
the concept of angle-monotone graphs. Let 0 < γ <
π be a real number. Bonichon et al. [1] introduced

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran. d.bakhshesh@ub.ac.ir
†Combinatorial and Geometric Algorithms Lab., Depart-

ment of Computer Science, Yazd University, Yazd, Iran.
mfarshi@yazd.ac.ir

the angle-monotone graphs with width γ. A geometric
path (v1, . . . , vn) is called angle-monotone with width
γ, if there is a closed wedge of angle γ such that for
each 1 ≤ i < n, the vector −−−→vivi+1 lies in this wedge.
This definition is equivalent to the following definition:
a geometric path (v1, . . . , vn) is called angle-monotone
with width γ if, for any two integers 1 ≤ i, j < k, the
angle between the two vectors −−−→vivi+1 and −−−−→vjvj+1 is at
most γ. A geometric graph is called angle-monotone
with width γ, if for any two vertices of the graph, there is
an angle-monotone path with width γ connecting them.

Bonichon et al. [1], posed the following open problem.

Open Problem [1]. Is there a constant 0 < γ < π
such that the standard Delaunay triangulation is
angle-monotone with width γ?

In this paper, we prove there exist Delaunay tri-
angulations that are not angle monotone with width
< 140◦. This makes significant progress towards solv-
ing the above open problem.

2 Preliminaries

Let n > 12 be an integer such that n − 12 is di-
visible by 18. Throughout the paper, suppose that
S := {s0, s1, . . . , sn−1} is a set of n points in the plane
placed at vertices of a regular n-gon. We assume that
the points of S are placed in clockwise direction, and s0
and sn/2 are on a horizontal line and s0 is to the left of
sn/2 (see Figure 1(a)). Let C be the circumcircle of S
and O its center. We may assume, without loss of gen-
erality, that the radius of C is one. Let P = S∪{A,B},
where A and B are two points in the plane such that
|OA| = |OB| and s0, A and O are collinear and sn−6

3
, B

and O are collinear. Let f = 2n−3
3 . Let D be the

circumcircle of the triangle 4ABsf and let O′ be the
center of D. Throughout this paper, the subscripts are
taken modulo n.

Now, we have the following observation.

Observation 1 For each 0 ≤ a ≤ n− 1 and k ≥ 0, the
segment sasa+1 is parallel to the segment sa−ksa+1+k

Now, we have the following lemma.

Lemma 1 The points O,O′ and sf are collinear and
the radius of D is less than the radius of C.

5

3rd Iranian Conference on Computational Geometry

s0
s1

sn−6
3

sn/2
sn−1

sf = s 2n−3
3

A

B

O

(a)

s0
sn−1

sn/2

sh

sr

sf

sf ′

A

B

(b)

Figure 1: (a) The point set of S for n = 48. The center
of the circumcircle of S is shown by O. (b) DT (P) for
n = 48, where P = S ∪ {A,B}.

Let f ≤ k ≤ n − 1 be an integer. Let Fk be the cir-
cumcircle of the triangle 4sksk+1A and let Ok be the
center of Fk. Let mk be the midpoint of the segment
sksk+1. Now, we have the following result.

Lemma 2 The points O,Ok and mk are collinear and
the radius of Fk is less than the radius of C.

3 Delaunay triangulation of the point set P

Let DT (P) be the Delaunay triangulation of the point
set P . Note that we added the points A and B to P ,
because we want DT (P) to be unique. Now, we prove
the following lemma.

Lemma 3 DT (P) contains the triangle 4ABsf .

Lemma 4 For each f ≤ k ≤ n − 1, DT (P) contains
the triangle 4sksk+1A.

Let f ′ = n−6
6 . Note that the midpoint of the segment

ff ′ is the point O. Similar to the proof of Lemma 3

and Lemma 4, by symmetric arguments, we can prove
the following lemmas.

Lemma 5 DT (P) contains the triangle 4ABsf ′ .

Lemma 6 For each 0 ≤ k < f ′, DT (P) contains the
triangle 4sksk+1A.

Lemma 7 For each f ′ ≤ k < f , DT (P) contains the
triangle 4sksk+1B.

In Figure 1(b), using Lemmas 3, 4, 5, 6 and 7, DT (P)
is shown for n = 48.

4 Angle-monotonicity property

In this section, we present a point set P ′ in the plane and
we show that for every angle α ≤ 140◦, the Delaunay
triangulation of P ′ is not angle-monotone with width α.
The point set P ′ is same as the point set P except that
in P ′ we assume that |OA| = |OB| = 1− ε, where ε > 0
is a small enough real number.

Let Q = (v1, . . . , vk) be a directed geometric
path from v1 to vk. We may assume, without
loss of generality, that v1 and vk are on a hor-
izontal line and vk is to the right of v1. Let
m(Q) = max1≤i<j≤n {angle(vivi+1, vjvj+1)}, where
angle(vivi+1, vjvj+1) is the angle between −−−→vivi+1 and−−−−→vjvj+1. According to the definition of an angle-
monotone path with width γ, we have the following
lemma.

Lemma 8 For every γ < m(Q), Q is not angle-
monotone with width γ.

Let h = n−6
3 . Let r be an integer such that n+3

3 < r <
n−2
2 . Consider five paths Q1, Q2, Q3, Q4 and Q5 from

sn−1 to sr as follows:

• Q1 = (sn−1, A,B, sr),

• Q2 = (sn−1, sn−2, sn−3, . . . , sr),

• Q3 = (sn−1, sn−2, sn−3, . . . , sf , B, sr),

• Q4 = (sn−1, A, sf , B, sr).

• Q5 = (sn−1, A, sf , sf−1, . . . , sr).

Now, we prove the following result.

Lemma 9 For paths Q1, . . . , Q5, it holds that

m(Q1) =
(n+ 3r − 3)π

3n
,m(Q2) =

(2n− 2r − 4)π

n
,

m(Q3) = π,

m(Q4) =
(n+ 3r + 3)π

3n
,m(Q5) =

(5n− 6r − 6)π

3n
.

6

ICCG 2020, Tehran, February 16, 2020

Proof. Note that according to the construction of P ′,
we may assume that ∠s0sn−1A = ∠shsh+1B = 0. This
assumption does not affect our results because we can
move the points A and B to s0 and sh, respectively, as
much as we need. So, even though the points A and s0
are different, we can assume that A = s0. Also, we may
assume that B = sh. In the following, our calculations
are based on this assumption.

• Calculation of m(Q1). By Observa-
tion 1, the segment sn−1sh+1 is parallel to
the segment s0ssh (see Figure 2). Then,
angle(sn−1s0, s0sh) = angle(s0sh, shsh+1).
Since r > h, clearly angle(s0sh, shsh+1) ≤
angle(s0sh, shsr). Then,

m(Q1) = max {angle(s0sh, shsr), angle(sn−1s0, shsr)} .
It is not hard to see that angle(s0sh, shsr) ≤
angle(sn−1s0, shsr). Hence, m(Q1) =
angle(sn−1s0, shsr). By Observation 1, seg-
ment sn−1s0 is parallel to the segment sn−h−1sh.

Then, we have angle(sn−1s0, shsr) =
angle(sn−h−1sh, shsr), and therefore m(Q1) =
angle(sn−h−1sh, shsr). Since h = n−6

3 and for any
0 ≤ a ≤ n− 1, ∠saOsa+1 = 2π

n , we have

m(Q1) = π − (n− h− 1− r)π
n

=
(n+ 3r − 3)π

3n
.

• Calculation of m(Q2). It is not hard to see
that the maximum angle between the edges on the
path Q2 is obtained by two edges (sn−1, sn−2) and
(sr+1, sr) (see Figure 2).

sf

sh
sf ′

s0
sn−1

A

B

sr

Figure 2: Illustrating proof of Lemma 9.

By Observation 1, the segment sn−r−4sr+1

is parallel to the segment sn−2sn−1.
Then, we have angle(sn−1sn−2, sr+1sr) =
angle(sn−r−4sr+1, sr+1sr). Hence,

m(Q2) = π− (r − (n− r − 4))π

n
=

(2n− 2r − 4)π

n
.

• Calculation of m(Q3). Note that f = 2n−3
3 and

h = n−6
3 . By Observation 1, the segment sn−2sn−1

is parallel to the segment sfsn−6
3

(see Figure 2).

Note that 4n−6
3 in modulo n is equal to n−6

3 . Then,
angle(sn−1sn−2, sfsh) = π = 180◦. Now, it is
not hard to see that the maximum angle between
the edges on the path Q3 is obtained by two edges
(sn−1, sn−2) and (sf , sh). Hence, m(Q3) = π.

• Calculation of m(Q4). To compute
m(Q4), we need to compute the four angles
angle(sn−1s0, s0sf), angle(sn−1s0, Bsr), angle(s0sf , sfB)
and
angle(sfB,Bsr) (see Figure 2). Note that
we do not need to compute the other angles
on the path Q4 such as angle(sn−1s0, sfsh),
because angle(sn−1s0, sfsh) is almost
equal to angle(sn−2sn−1, sfsh). This is
because that angle(sn−2sn−1, sfsh) =
π − angle(sn−1sn−2, sfsh) = 0 (see calcula-
tion of m(Q3)). Therefore, obviously these angles
are smaller than the four angles. Now, we compute
these four angles.

1.

angle(sn−1s0, s0sf) = π − (n− 1− f)π

n

= π −
(
n− 1− 2n−3

3

)
π

n

=
2π

3
.

2. By Observation 1, the segment sn−1s0 is par-
allel to the segment sn−h−1sh. Therefore,
angle(sn−1s0, shsr) = angle(sn−h−1sh, shsr).
Now, since h = n−6

3 , we have

angle(sn−h−1sh, shsr) = π − (n− h− 1− r)π
n

=
(n+ 3r − 3)π

3n
.

3.

angle(s0sf , sfsh) = π − hπ

n
=

(2n+ 6)π

3n

4.

angle(sfsh, shsr) = π− (f − r)π
n

=
(n+ 3r + 3)π

3n
.

Since we assumed that r > n+3
3 , it is easy to

show that n+3r+3
3n > 2n+6

3n , n+3r+3
3n > n+3r−3

3n and
n+3r+3

3n > 2
3 . Hence, we have

m(Q4) =
(n+ 3r + 3)π

3n
.

7

3rd Iranian Conference on Computational Geometry

• Calculation of m(Q5). It is not hard to see
that to compute m(Q5) on the path Q5, it
is sufficient to calculate angle(sn−1s0, s0sf) and
angle(s0sf , sr+1sr) (see Figure 2).

Similar to the calculation of m(Q4), we have
angle(sn−1s0, s0sf) = 2π

3 . Now, we compute
angle(s0sf , sr+1sr). By Observation 1, the
segment sfs0 is parallel to the segment
sr+1sf−r−1. Then, angle(s0sf , sr+1sr) =
angle(sf−r−1sr+1, sr+1sr). Now, since f = 2n−3

3 ,
we have

angle(sf−r−1sr+1, sr+1sr) = π − (r − (f − r − 1))π

n

=
(5n− 6r − 6)π

3n
.

Since r < n−2
2 , we have (5n−6r−6)π

3n > 2π
3 . Hence,

m(Q5) =
(5n− 6r − 6)π

3n
. �

Theorem 10 For any α ≤ (7n−12)π
9n , DT (P ′) is not

angle-monotone with width α.

Proof. Let r = 4n−3
9 . It is easy to see that n+3

3 < r <
n−2
2 . Now, let Q be a path from sn−1 to sr such that

m(Q) is minimum. According to the shape of DT (P ′),
it is not hard to see that the paths Q1, Q2, Q3, Q4 and
Q5 are only candidates for the path Q. Note that some
of the paths from sn−1 to sr such as (sn−1, A, sf ′ , B, sr)
cannot be the path Q because some of the edges on the
path increase the value of m(Q). Hence,

m(Q) = min {m(Q1),m(Q2),m(Q3),m(Q4),m(Q5)} .

By Lemma 9, we have

m(Q1) =
(n+ 3r − 3)π

3n
,m(Q2) =

(2n− 2r − 4)π

n
,

m(Q3) = π,m(Q4) =
(n+ 3r + 3)π

3n
,

m(Q5) =
(5n− 6r − 6)π

3n
.

Now, since m(Q3) = π and m(Qi) ≤ π, we have

m(Q) = min {m(Q1),m(Q2),m(Q4),m(Q5)}
= min {m(Q1),m(Q2),m(Q5)} .

On the other hand, it is easy to see that 5n−6r−6
3n <

2n−2r−4
n . Therefore, m(Q5) < m(Q2). Since r <

n−2
2 < 5n−9

9 , it is easy to see that n+3r−3
3n <

2n−2r−4
n . Then, m(Q1) < m(Q2). Hence, m(Q) =

min {m(Q1),m(Q5)}.
It is easy to see that for r = 4n−3

9 , we have

(n+ 3r − 3)π

3n
=

(5n− 6r − 6)π

3n
.

Hence, by substituting r = 4n−3
9 in m(Q1) and m(Q5),

we have m(Q) = (7n−12)π
9n . Then, by Lemma 8, for any

α ≤ (7n−12)π
9n , Q is not angle-monotone with width α.

This completes the proof. �

Since

lim
n→∞

(7n− 12)π

9n
=

7π

9
= 140◦,

using Theorem 10, we easily conclude the following re-
sult.

Corollary 1 The Delaunay triangulation of a given
point set in the plane is not necessarily angle-monotone
with width less than or equal to 140◦.

5 Conclusion

In this paper, we showed that for any α ≤ 7π
9 = 140◦,

the standard Delaunay triangulation of a given point
set is not necessarily angle-monotone with width α. We
leave the following open problems.

1. Is there a constant 140◦ < α < 180◦ such that the
standard Delaunay triangulation is angle-monotone
with width α?

2. Are there other types of triangulations that are
known to be angle-monotone with some width <
140◦?

References

[1] N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna,
A. Lubiw, and S. Verdonschot. Gabriel triangula-
tions and angle-monotone graphs: Local routing and
recognition. In Graph Drawing and Network Visu-
alization, pages 519–531, 2016.

[2] H. R. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-chord graphs on point sets. In Graph
Drawing and Network Visualization, pages 464–475,

2014.

8

ICCG 2020, Tehran, February 16, 2020

Never Absent for Long and Never Far Away

Ali Gholami Rudi∗ Fatemeh Golchin†

Abstract

A stay region of a moving entity is a region in the plane
in which it spends a significant amount of time. In this
paper we find stay regions with the following definition.
Let α and g be constants, such that α > 1 and g > 0.
A stay region of a trajectory is an axis-aligned square,
such that the moving entity is never outside it, unless
for durations of at most g. Also, if the side length of the
stay region is s, the entity should never leave an axis-
aligned square with the same centre but of side length
αs. The goal is finding a stay region of the minimum
size. We present an algorithm that, for any real constant
ε where 0 < ε < 1, finds a stay region of side length at
most (1 + ε) ·P in almost linear time, in which P is the
side length of the optimal answer.
Keywords: Geometric algorithms, trajectory analysis,
stay regions.

2010 Mathematics subject classification: 68U05.

1 Introduction

The movement of various objects such as cars, animals,
and mobile devices are collected to extract valuable in-
formation, either about the object itself or about its
surrounding environment [10, 3, 5, 1]. Performing such
analyses on trajectories, which can be very large in avail-
able trajectory databases, requires efficient algorithms.
One of the analyses performed on trajectories is find-
ing the regions in which the moving entity has spent a
significant amount of time [9].

Different definitions for stay regions (also called stay
points, popular or interesting places, or hotspots) has
been examined and algorithms have been presented for
identifying them [4, 9, 8, 11, 2, 12, 13]. Among the
firsts, Benkert et al. [4] defined a popular place to be
an axis-aligned square of fixed side length in the plane
which is visited by the most number of distinct trajec-
tories. They modelled a visit either as containing of a
trajectory vertex or containing of any portion of a tra-
jectory edge, and presented optimal algorithms for find-
ing them with time complexities O(n log n) and O(n2),

∗Department of Electrical and Computer Engineering, Babol
Noshirvani University of Technology, gholamirudi@nit.ac.ir
†Department of Computer Engineering, Sharif University of

Technology

respectively, in which n is the total number of trajec-
tory vertices. Gudmundsson et al. [9] introduced sev-
eral different definitions of trajectory hotspots. In some
of these definitions, a hotspot is an axis-aligned square
that contains a continuous sub-trajectory with the max-
imum duration and in others it is an axis-aligned square
in which the entity spends the maximum possible du-
ration but its presence may not be continuous. For
hotspots of fixed side length, for the former they pre-
sented an O(n log n) algorithm and for the latter they
presented an algorithm with the time complexity O(n2)
to find the hotspots of a trajectory with n vertices.
For the case where the edges of a trajectory are or-
thogonal, Rudi [13] presented an 1/2-approximation al-
gorithm with the time complexity O(n log3 n) to find
non-continuous hotspots of a trajectory. Heuristic al-
gorithms have also been published to identify hotspots
with a definition similar to the ones considered by Gud-
mundsson et al. [9], such as the one presented by Dami-
ani et al. [6].

There are applications in which we need to identify
regions that are regularly visited. Djordjevic et al. [7]
concentrated on a limited form of this problem and pre-
sented an algorithm to decide if a region is visited almost
regularly (in fixed periods of time) by an entity.

However, in many applications that require spatio-
temporal analysis, we are interested in finding regions
that are never left for a long time. Examples include
bird nests, animal resting place, player posts in sports,
and bus stations. For this problem, Arboleda et al. [2]
assumed that the input consists, in addition to the tra-
jectories, of a set of polygons as potential stay points
or interesting sites. They presented a simple algorithm
to identify stay points among the given interesting sites;
their algorithm computes the longest sub-trajectory vis-
iting each interesting site, while allowing the entity to
leave the site for some predefined amount of time. They
also mentioned motivating real world examples to show
that in some applications, it makes sense to allow the
entity to leave the site for short periods of time, like
leaving a cinema for the bathroom.

Rudi [12] presented a (1+ε)-approximation algorithm
to find all axis-aligned squares, in which the entity is
always present, except for short periods of time. His
algorithm runs in O(kn2) time, in which k depends on
ε and the length of trajectory edges. The main idea of
his approximation algorithm is considering snapshots of
the regions that can be a stay regions and computing

9

3rd Iranian Conference on Computational Geometry

A(0)
B(10)

C(40)

D(50)

E(70)

F(80)

G(82)

H(85)

I(86)

Figure 1: An example trajectory stay region for α = 2
and g = 10.

their intersection. We study a similar problem, with
the difference that we assume the side length of a stay
region is not known beforehand and our goal is finding
a stay region of the minimum possible size. Also, we
assume that the entity never moves very far from the
stay region.

This paper is organised as follows. In Section 2 we
introduce the notation of the paper. In Section 3 we
present the approximation algorithm, and finally, in Sec-
tion 4 we present our experimental results and conclude
this paper.

2 Preliminaries

A trajectory is a sequence of points on the plane, which
we call its vertices. Each vertex has a timestamp, in-
dicating the time at which the entity was observed at
that point. The entity is assumed to have moved from
each vertex to its next in a straight line and at constant
speed (the timestamps of the sequence of vertices of a
trajectory is nondecreasing). The segments connecting
contiguous vertices of a trajectory are its edges.

Throughout this paper, we assume α and g are input
constants such that α ≥ 1 and g > 0. A stay region is
defined as follows.

Definition 1 An axis-aligned square R with side length
s is a stay region of trajectory T , if the entity is never
outside it for time more than g and never leaves the axis-
aligned square with side length αs and with the same
centre of gravity as R.

Figure 1 demonstrates a stay region for an exam-
ple trajectory. The trajectory starts from the vertex
marked as A and ends at I. The numbers inside paren-
theses are timestamps. The solid square is a stay region.
Our goal in this paper is finding the smallest possible
stay region, as defined in Definition 2.

Definition 2 An optimal stay region of a trajectory T
is a stay region with the minimum possible size. A (1 +
ε)-approximate stay region is a stay region whose side
length is at most (1 + ε) times the side length of an
optimal one, in which ε > 0.

Optimal (exact) stay regions of a trajectory may be
found using the algorithm presented by Gudmundsson
et al. [9], with the worst-case time complexity Ω(n2).

3 Finding the Stay Regions

In this section we present an algorithm for finding ap-
proximate stay regions of a trajectory. Lemma 1 shows
that the minimum size of a stay region is bounded.

Lemma 1 Let t be the side length of a square R of
minimum size containing all edges of trajectory T . Also,
let s be the side length of an optimal stay region. We
have

t/α ≤ s ≤ t.

Proof. Obviously, s cannot be larger than t, because
R is a stay region by Definition 1. On the other hand,
because R is the smallest square containing T , the side
length of any stay region cannot be smaller than t/α;
otherwise, there cannot exist a square of side length αs
containing the whole trajectory, as required by Defini-
tion 1. �

Let Gs be a grid, formed by parallel vertical lines
x = i · s and parallel horizontal lines y = j · s, for every
possible integral values of i and j. Each s × s cell of
Gs is identified using a tuple Gs(i, j), whose lower left
corner is at (is, js). For any point p = (px, py) on the
plane, the cell that contains p is Gs(bpx/sc, bpy/sc); we
also use Gs(p) to refer to this cell. We assume that the
computation model is strong enough to compute the
floor function in constant time.

Lemma 2 Let ε be a real constant such that ε > 0.
Consider any value of s (s > 0) and define s′ as s+ εs.
Define a set of vectors V as follows:

V = {(−iεs,−jεs) | ∀ integers i, j such that 0 ≤ i, j ≤ 1/ε}

For any axis-aligned square R of side length s there ex-
ists a member v of V such that R+ v is contained in a
single cell of grid Gs′ .

10

ICCG 2020, Tehran, February 16, 2020

Proof. Obviously, the size of V is O(1/ε2). Let p =
(x, y) be the lower left corner of R, such that x =
as′ + a′ and y = bs′ + b′ for integers a and b, such
that 0 ≤ a′, b′ < s′. This implies that point (x, y) is in
cell Gs′(a, b) of Gs′ . Let i = ba′/εsc and j = bb′/εsc.
The vector (−iεs,−jεs) is in V . The distance of p + v
and the left side of Gs′(a, b) is a′− iεs, which is smaller
than εs, based on the definition of i. Similarly, the dis-
tance from p+v and the lower side of Gs′(a, b) is smaller
than εs. This implies that R (with dimensions s× s) is
contained in Gs′(a, b) (with dimensions s′ × s′). �

When the side length of stay regions is specified, The-
orem 3 uses Lemma 2 to find a stay region, which may
be slightly larger.

Theorem 3 Let ε be any positive, non-zero real con-
stant. For a trajectory T with n vertices, if there ex-
ists a stay region of side length s, a stay region of side
length s+ εs can be computed with the time complexity
O(nα2/ε2).

Proof. Let P = 〈p1, p2, ..., pn〉 be the sequence of the
vertices of T , ordered by their timestamps. Define s′ as
s + εs and consider the grid Gs′ . Let V be the set of
vectors defined in Lemma 2. For each vector v in V ,
we repeat the following steps for trajectory T ′ = T + v
(each vertex of T is moved by vector v).

1. We can find the minimum and maximum values of
x and y coordinates of these vertices in O(n) time.
Let C be the set of all cells of Gs′ containing any
part of the smallest square R containing the whole
of T ′ such that the whole trajectory is contained in
the square with the same centre but of side length
αs.

2. For each cell c of C we store two numbers: clast
is the timestamp of the last visit to this cell for
trajectory T ′, and cstay specifies if this cell can be
a stay region or not. For every cell c of C, initialise
clast as the time stamp of p1 and cstay as true.

3. We consider each trajectory cell c intersected by
the trajectory T ′ as follows.

(a) Compute the time t at which the trajectory
enters c. If clast− t is greater than g, c cannot
be a stay point and we assign false to cstay.

(b) Compute the time t at which the trajectory
leaves c and update the value of clast.

4. Let t be the timestamp of pn. For each cell c in
C, if clast − t is greater than g, c cannot be a stay
point and we assign false to cstay.

5. Report any cell c of C such that cstay is true.

The above procedure is repeated O(1/ε2) times, once
for each vector v in V . Since the side length of R
is at most αs (otherwise, no stay region can exist by
Lemma 1), the size of C is dαs/se × dαs/se, or O(α2),
asymptotically. Given that each edge of the trajectory
visits at most O(α) cells of C, the time complexity of
step 3 is O(αn). The steps 2, 4, and 5 check each
cell of C, and therefore, have time complexity O(α2).
Thus, the time complexity of the whole algorithm is
O(α2/ε2 + αn/ε2). �

We present our approximation algorithm for finding
an approximate stay region of a trajectory in Theo-
rem 4.

Theorem 4 Let ε be any positive, non-zero real con-
stant. We can find a (1 + ε) stay region of a trajec-
tory T with n vertices with the time complexity O(n ·
α2/ε2 log ε/α).

Proof. Let t be the side length of the smallest square
containing all vertices of trajectory T . Let o be the side
length of an optimal stay region. Lemma 1 implies that
o is between t/α and t. Define ε′ as ε/3. Let o′ be the
smallest value of s for which Theorem 3 finds a stay
region when the value of ε in the theorem is specified as
ε′. Based on Theorem 3, we have

o′ − o ≤ ε′o. (1)

We perform a binary search with b steps to find the
smallest value x for s such that there exists a stay region
of size at least x, in which b is defined as follows:

b =
⌈
log

α

ε′

⌉

Given that in the i-th step of the binary search, the
distance between the selected value of s and o is at most
2−it, after b steps, the difference between x and o′ would
be t/b ≤ tε′/α. Given that o′ is at most t/α, we have

x− o′ ≤ ε′o′. (2)

By combining Equations 1 and 2, we get

x− o ≤ (x− o′) + (o′ − o),

and
x− o ≤ ε′o+ (ε′ + ε′2)o ≤ 3ε′o ≤ εo.

This implies that the binary search finds a (1 + ε)-
approximate stay region of T .

Since the algorithm of Theorem 3 is repeated b
times, the time complexity of the whole algorithm is
O(n · α2/ε2 log ε/α). �

Note that the result Theorem 4 can be extended to
handle other fat objects like disks as stay regions, or to
find stay regions in higher dimensions.

11

3rd Iranian Conference on Computational Geometry

α

S
t�

y
re
g
io
n
si
d
e
le
n
g
th

(m
et
er
s)

0 20000 40000 60000 80000 100000

500

1000

1500

Figure 2: The effect of the value of α on stay region side
length (ε is .5 and g is five hours)

4 Discussion

To experimentally evaluate the presented algorithm, we
implemented it and tested it on real-world trajectories.
We used the T-Drive dataset [14], which contains one-
week trajectories of more than ten thousand taxis. The
algorithm was implemented in C programming language
and the experiments were performed in the Ubuntu
14.04 distribution of Linux operating system using an
Intel Core i5-4670 3.4GHz processor.

Among the trajectories in T-Drive dataset, we chose
the one with the most vertices (about 154 thousand).
Figure 2 visualises the size of the computed stay re-
gion for different values of α. The implementation, for
instance, finds a 1.5km× 1.5k square, to which the tra-
jectory returns every 5 hours and never leaves the con-
taining square of dimension 1500km× 1500km.

Figure 3 shows how α affects the running time of the
algorithm and Figure 4 shows the effect of ε. The im-
plementation seems very fast for ε = .1, though, as ex-
pected, the running time increases quadratically when
it is decreased. Also, increasing α seems to increase the
running time of the algorithm, though quadratically, at
at a slow rate. Note that in this implementation, in
each stop of the binary search of Theorem 4, we stop
when for any vector v in V of Theorem 3 a stay re-
gion is found and this improves the running time of the
implementation.

References

[1] S. P. A. Alewijnse, K. Buchin, M. Buchin, S. Sijben,
and M. A. Westenberg. Model-based segmentation and
classification of trajectories. Algorithmica, 80(8):2422–
2452, 2018.

[2] F. J. M. Arboleda, V. Bogorny, and H. Patiño.
Smot+ncs - algorithm for detecting non-continuous
stops. Computing and Informatics, 3(2):283–306, 2017.

[3] B. Aronov, A. Driemel, M. J. van Kreveld, M. Löffler,
and F. Staals. Segmentation of trajectories on non-
monotone criteria. ACM Transactions on Algorithms,
12(2):26:1–26:28, 2016.

α

R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

0 20000 40000 60000 80000 100000

10

20

30

40

50

Figure 3: The effect of the value of α on the running
time (ε is .5 and g is five hours)

ε

R
u
n
n
in
g
ti
m

�

(s

�

co
n
d
s)

0 0.2 0.4 0.6 0.8

50

100

150

200

Figure 4: The effect of the value of ε on the running
time (α is 20k and g is five hours)

[4] M. Benkert, B. Djordjevic, J. Gudmundsson, and
T. Wolle. Finding popular places. International
Journal of Computational Geometry and Applications,
20(1):19–42, 2010.

[5] K. Buchin, M. Buchin, M. J. van Kreveld, B. Speck-
mann, and F. Staals. Trajectory grouping structure.
Journal of Computational Geometry, 6(1):75–98, 2015.

[6] M. L. Damiani, H. Issa, and F. Cagnacci. Extracting
stay regions with uncertain boundaries from GPS tra-
jectories - a case study in animal ecology. In ACM In-
ternational Conference on Advances in Geographic In-
formation Systems, pages 253–262, 2014.

[7] B. Djordjevic, J. Gudmundsson, A. Pham, and
T. Wolle. Detecting regular visit patterns. Algorith-
mica, 60(4):829–852, 2011.

[8] M. Fort, J. A. Sellarès, and N. Valladares. Computing
and visualizing popular places. Knowledge and Infor-
mation Systems, 40(2):411–437, 2014.

[9] J. Gudmundsson, M. J. van Kreveld, and F. Staals. Al-
gorithms for hotspot computation on trajectory data.
In ACM International Conference on Advances in Ge-
ographic Information Systems, pages 134–143, 2013.

[10] H. J. Miller, S. Dodge, J. A. Miller, and G. Bohrer.
Towards an integrated science of movement - converg-
ing research on animal movement ecology and human
mobility science. International Journal of Geographical
Information Science, 33(5):855–876, 2019.

12

ICCG 2020, Tehran, February 16, 2020

[11] R. Pérez-Torres, C. Torres-Huitzil, and H. Galeana-
Zapién. Full on-device stay points detection in smart-
phones for location-based mobile applications. Sensors,
16(10):1693, 2016.

[12] A. G. Rudi. Looking for bird nests: Identifying stay
points with bounded gaps. In The Canadian Conference
on Computational Geometry, pages 334–339, 2018.

[13] A. G. Rudi. Approximate hotspots of orthogonal tra-
jectories. Fundamenta Informaticae, 167(4):271–285,
2019.

[14] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun.
Where to find my next passenger. In UbiComp, pages
109–118, 2011.

13

14

ICCG 2020, Tehran, February 16, 2020

Competitive Strategies for Walking in Streets for a Simple Robot Using
Local Information

Azadeh Tabatabaei∗ Mohammad Aletaha† Mohammad Ghodsi‡

Abstract

We consider the problem of walking in an unknown
street, for a robot that has a minimal sensing capability.
The robot is equipped with an abstract sensor that only
detects the discontinuities in depth information (gaps)
and can locate the target point as it enters its visibility
region. First, we propose an online deterministic search
strategy that generates an optimal search path for the
simple robot to reach the target t, starting from s. The
path created by this strategy is 9-competitive which is
proven to be optimal. In contrast with previously known
research, the path is designed without memorizing any
portion of the scene that has been seen so far. The robot
using local information about the location of some gaps
achieves the target t starting from s in a street. Then,
we present a randomized search strategy, based on the
deterministic strategy. Also, a randomized lower bound
on the competitive ratio has been proved.

1 Introduction

Path planning is a basic problem to almost all scopes of
computer science; such as computational geometry, on-
line algorithms, robotics, and artificial intelligence [3].
Especially, path planning in an unknown environment
for which there is no geometric map of the scene is
interesting in many real-life cases. Robot sensors are
the only tool for gathering information in an unknown
street. The amount of information derived from the en-
vironment depends on the capability of the robot. Due
to the importance of using a simple robot, including low
cost, less sensitive to failure, robust against sensing er-
rors and noise, many types of path planning for simple
robots have been studied [1, 5, 9].

In this paper, we consider the problem of walking a
simple robot in an unknown street. A simple polygon P
with two separated vertices s and t is called a street if
the left boundary chain Lchain and the right boundary
chain Rchain constructed on the polygon from s to t are
mutually weakly visible. In other words, each point on

∗Department of Computer Engineering, University of Science
and Culture, Tehran, Iran, a.tabatabaei@usc.ac.ir

†Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran, mohammadaletaha@ce.sharif.edu

‡Sharif University of Technology and Institute for Research in
Fundamental Sciences (IPM), Tehran, Iran, ghodsi@sharif.edu

the left chain can see at least one point on the right
chain and vice versa [6], see Figure 1(a). A point robot
which its sensor has a minimal capability that can only
detect discontinuities in depth information (gaps) and
the target point t, starts searching the street. The robot
can locate the target as soon as it enters its visibility
region. Also, the robot cannot measure any angles or
distances, or infer its position, see Figure 1. The goal
is to reach the target t using the information gathered
through its sensor, starting from s such that the tra-
versed path by the robot is as short as possible.

To evaluate the efficiency of a search strategy for the
robot, we use the notion of competitive of the compet-
itive analysis. The competitive analysis for a strategy
that leads the robot is the ratio of the (expected) dis-
tance traversed by the robot over the shortest distance
from s to t, in the worst case.

In this paper, first, we present a deterministic strat-
egy using local information about the location of two
special gaps which are updated during the walking. The
robot achieves the target, without memorizing environ-
ment and without using pebbles, in contrast with pre-
viously known research [10]. The search path is opti-
mal; the length of the generated path is at most 9 times
longer than the shortest path. Then, we present a ran-
domized strategy that generates a search path similar to
the deterministic one. We introduced the deterministic
strategy and the idea of randomization of that previ-
ously in [12].

Related Works: Klein proposed the first competi-
tive algorithm for walking in streets problem for a robot
that was equipped with a 360 degrees vision system [6].
Also, Icking, et al. presented an optimal search strat-
egy for the problem with the competitive factor of

√
2

[4]. Many online strategies for patrolling unknown en-
vironments such as streets, generalized streets, and star
polygons are presented in [3, 7, 13].

The limited sensing model (gap sensor) that our robot
is equipped with, in this research, was first introduced
by Tovar, et al. [14]. They offered Gap Navigation Tree
(GNT) to maintain and update the gaps seen along a
navigating path. Some strategies, using GNT for ex-
ploring unknown environments, presented in [8, 15].

Tabatabaei, et al. gave a deterministic algorithm for
the simple robot to reach the target t in a street and
a generalized street, starting from s. The robot us-

15

3rd Iranian Conference on Computational Geometry

R

inflection ray

R

bitangent
complement

R

L

(b) (c)

(d) (e)

R

R

R
L

R

bitangent
complement

R

L

bitangent
complement

R

(a)

R

R

L

R

R
L R

LR LR

R

L

R

L R

LR

R

LL R

LR

R

R R R

bitangent
complement

(f)

Lchain
Rchain

s

t
gr

gl

L

R
L

R

Figure 1: Street polygons and the dynamical changes
of the gaps as the robot walks towards a gap in street
polygons. The dark circle is the location of the robot,
and squares and other circles denote primitive and non-
primitive gaps respectively. (a) Existing gaps at the
start point. (b) A split event. (c) A disappearance
event. (d) An appearance event. (e) Another split
event. (f) A merge event.

ing some pebbles and memorizing some portion of the
streets has seen so far, explores the street. The target
t is achieved such that the traversed path is at most 11
times longer than the shortest path by using one pebble.
Also, they showed, allowing the use of many pebbles re-
duces the factor to 9 [10, 11].

Another minimal sensing model was presented by
Suri, et al. [9]. They assumed that the simple robot can
only sense the combinatorial (non-metric) properties of
the environment. The robot can locate the vertices of
the polygon in its visibility region and can report if there
is a polygonal edge between them. Despite the mini-
mal ability, they showed that the robot can accomplish
many non-trivial tasks. Then, Disser et al. empowered
the robot with a compass to solve the mapping problem
in polygons with holes [2].

2 Preliminaries

2.1 The Sensing Model and Motion Primitives

The robot has an abstract sensor that reports a cycli-
cally order list of discontinuities in the depth informa-
tion (gaps) in its visibility region, see Figure 1(a). All
the gaps and the target can be located by the robot as
they enter in the robots omnidirectional and unbounded
field of view. Each gap has a label of L (left) or R (right)
which displays the direction of the part of the scene that
is hidden behind the gap, see Figure 1.

The robot can orient its heading to each gap and
moves towards the gap in an arbitrary number of steps,
e.g., two steps towards gap gx. Each step is a constant

distance which is already specified for the robot by its
manufacturer, it puts a stepper motor on the robot that
specifies its step size, for example 1mm, 2mm,..., also,
the robot moves towards the target as it enters its visi-
bility region.

While the robot moves, combinatorial changes occur
in the visibility region of the robot called critical events.
There are four types of critical events: appearances,
disappearances, merges and splits of gaps. Appearance
and disappearance events occur when the robot crosses
inflection rays. Each gap that appears during the move-
ment, corresponds to a portion of the environment that
was already visible, but now is not visible. such gaps
are called primitive gaps and all the others are non-
primitive gaps. Merge and split events occur when the
robot crosses bitangent, as illustrated in Figure 1.

2.2 Known Properties

At each point of the search path, if the target is not
visible, the robot reports a set of gaps with the labels of
L or R (l-gap and r-gap for abbreviation) cyclically. Let
gl be a non-primitive l-gap that is on the right side of
the other left gaps, and gr be a non-primitive r-gap that
is in the left side of the other right gaps, see Figure 1(a).
Each of the two gaps is called the most advanced gap.
The two gaps have a fundamental role in path planning
for the simple robot.

Theorem 1 [4, 10] While the target is not visible, it is
hidden behind one of the two gaps, gl or gr.

From Theorem 1, if there exist only one of the two
gaps (gr and gl) then the goal is hidden behind the
gap. Thus, there is no ambiguity and the robot moves
towards the gap, see Figure 2(a). When both of gr and
gl exist, a funnel case arises, see Figure 2(b). At each
funnel case, the robot does not know that the shortest
path is along which ofgr and gl. So, usually, a detour
from the shortest path is unavoidable.

2.3 Essential Information

All we maintain during the search strategy is the loca-
tion of gl and gr. As the robot moves in the street, the
critical events that change the structure of the robot’s
visibility region may dynamically change gl and gr.
Also, by the robot movement, a funnel case may end
or a new funnel may start. We refer to the point, in
which a funnel ends a critical point of the funnel.

The following events update the location of gl and
gr as well as a funnel situation when the robot moves
towards gl or gr.

1. When gr/gl splits into gr/gl and another r-gap/l-
gap, then gr/gl will be replaced by the r-gap/l-gap,
(point 1 in Figure 2(b)).

16

ICCG 2020, Tehran, February 16, 2020

2. When gr/gl splits into gr/gl and another l-gap/r-
gap, then l-gap/r-gap will be set as gl/gr. This
point is a critical point in which a funnel situation
ends, (point 2 in Figure 2(b)).

3. When gl or gr disappears, the robot may achieve
a critical point in which a funnel situation ends,
(point 3 in Figure 2(a)).

Note that the split and disappearance events may occur
concurrently, (point 3 in Figure 2(b)). Furthermore, by
moving towards gr and gl, these gaps never merge with
other gaps.

t

Critical point

s

j

(a)

3

1

(b)

t

2

1

2

s

gls

grs

3

Figure 2: The bold path is the robot search path, the dotted
path is shortest path, and vl and vr are the corresponding
reflex of gl and gr respectively. (a) There is only gr. (b) gr

and gl are the two most advanced gaps at the start point s,
in which a funnel case arises. The angle between the gaps,
φ, is the opening angle at the start point.

s

j

gl

vl

gr

vr

pi

pi+1

vl vr

d

p

j

(a)

(b)

s

1
3

6
12

Figure 3: (a) pipi+1 is a detour from the shortest path. (b)
The worst case.

3 Algorithm

Now, we present our strategy for searching the street,
from s to t. Since the target is constantly behind one of
gr and gl, during the search, the location of the two gaps
is maintained and dynamically updated as explained in
the previous section.

3.1 A Deterministic Strategy

At each point of the search path, especially at the start
point s, there are two cases:

• If only one of the two gaps (gr and gl) exists, or
they are collinear then the goal is hidden behind
the gap. The robot moves towards the gap until
the target is achieved or a funnel situation arises,
see Figure 2(a).

• If there is a funnel case, to bound the detour, the
robot moves towards gr and gl alternatively, as fol-
lows:

Move towards gr up to one step;
d← 3;
repeat

Move towards gl up to d steps;
if Critical point not achieved then

d← 2.d;
Move towards gr up to d steps;

end if
d← 2.d;

until Critical point of the funnel achieved;

At the critical point, one of gr or gl disappears,
or gr and gl are collinear. So, the robot moves
along the existing gap direction until the target is
achieved or a new funnel situation arises, as illus-
trated in Figure 2(b).

3.2 The Randomized Strategy

Now, we present a randomized search strategy based
on the above deterministic strategy. The difference be-
tween them is using a random variable at the beginning
of the above algorithm (in the funnel case). We choose
random variable X from {0, 1} u.a.r to lead the robot
towards gr or gl at the first movement while in the de-
terministic strategy, the robot moves towards gr.

3.3 Correctness and Analysis

Throughout the search, the robot path coincides with
the shortest path unless a funnel case arises. Then, to
prove the competitive ratio of our strategy, we compare
the length of the path and the shortest path in a funnel
case. In the case, the angle between gr and gl that is
always smaller than π is called the opening angle [4],
see Figure 2(b). In lemma 3, we show that our robot

17

3rd Iranian Conference on Computational Geometry

detour from the shortest path depends on the size of the
angle.

Also, we inspire from the doubling strategy by Baeza-
Yates, et al. [1] to compute the competitive ratio of
our strategy. In the strategy, a robot moves back and
forth on a line such that the distance to the start point
doubles at each movement until the target is reached.

Theorem 2 [1] The doubling strategy for searching a
point on a line has a competitive factor of 9, and this is
optimal.

Lemma 3 By our strategy, the detour from the short-
est path for a small opening angle, in the funnel case,
is shorter than detour for a large opening angle.

Theorem 4 Our deterministic strategy guarantees a
path at most 9 times longer than the shortest path. Also,
the strategy is optimal.

The proof of Theorem 4 shows that our deterministic
strategy to reach the goal in street is a planar general-
ization of the doubling strategy for search a point on a
line.

Theorem 5 The randomized strategy generates a
search path to achieve target t in the street, starting from
s, with an expected competitive ratio of 7.

3.4 Randomized Lower Bound

To achieve a randomized lower bound of the competitive
ratio we consider a special funnel case which it’s open-
ing angle is very closed to π. so we can consider it as a
problem of searching on the line, see Figure 3(b). Kao,
Reif, and Tate [5] proved that the randomized lower
bound of the competitive ratio for searching on the line
is 1+ (1+ r)/ ln r where r is the multiplication factor of
the randomized SmartCow algorithm and it is optimal.
If we let r=3.59112 we can achieve the expected com-
petitive factor of 4.59112 which is optimal and no other
strategy can achieve this bound.

Theorem 6 There is no on-line randomized strategy
for walking in the streets for a simple robot that achieves
an expected competitive ratio of less than 4.59112.

4 Conclusions

In this paper, we have improved the previously known
strategy for walking in streets for a simple robot. The
point robot can only detect the gaps and the target
in the environment. The robot using local information
about the location of some gaps, along a 9-competitive
optimal path achieves the target t starting from s in
a street. Also, based on the improved strategy, a ran-
domized strategy that has better performance is pro-
posed. The expected length of the generated path by

the random strategy is 7 times longer than the shortest
path. Moreover, a randomized lower bound of 4.59112
is proved. It would be absorbing if there are competitive
search strategies for more general classes of polygons.

References

[1] Baeza-yates, R. A., Culberson, J. C., Rawlins, G. J.
Searching in the plane. Information and Computation,
106(2):234–252, 1993.

[2] Disser, Y., Ghosh, S. K., Mihalk, M., Widmayer, P.
Mapping a polygon with holes using a compass. Theo-
retical Computer Science,553, 106-113. 2013.

[3] Ghosh, S., Klein, R. Online algorithms for searching
and exploration in the plane. Computer Science Review,
4(4):189–201, 2010.

[4] Icking, C., Klein, R., Langetepe, E. An optimal com-
petitive strategy for walking in streets. In STACS 99,
Springer Berlin Heidelberg, 110–120, 1999.

[5] Kao, Mi., Reif, J., Tate, S. Searching in an unknown
environment: An optimal randomized algorithm for
the cow-path problem. Information and Computation,
131(1):63–79, 1996.

[6] Klein, R. Walking an unknown street with bounded
detour. Computational Geometry, 1(6):325–351, 1992.

[7] Lpez-Ortiz, A., Schuierer, S. Lower bounds for streets
and generalized streets. International Journal of Com-
putational Geometry and Applications, 11(04):401–421,
2001.

[8] Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S. M. Op-
timal Gap Navigation for a Disc Robot. In Algorith-
mic Foundations of Robotics, Springer Berlin Heidel-
berg, 123–138, 2012.

[9] Suri, S., Vicari, E., Widmayer, P. Simple robots with
minimal sensing: From local visibility to global geom-
etry. The International Journal of Robotics Research,
27(9):1055–1067, 2008.

[10] Tabatabaei, A., Ghodsi, M. Walking in Streets with
Minimal Sensing. Journal of Combinatorial Optimiza-
tion, 30(2):387–401, 2015.

[11] Tabatabaei, A., Ghodsi, M., Shapouri, F. A Compet-
itive Strategy for Walking in Generalized Streets for a
Simple Robot. CCCG, (pp. 75-79), 2016.

[12] Tabatabaei, A., Ghodsi, M. Randomized Strat-
egy for Walking in Streets for a Simple Robot.
arXiv:1512.01784v2, 2015

[13] Tabatabaei, A., Ghodsi, M. and Shapouri, F. Compet-
itive Strategy for Walking in Streets for an Empowered
Simple Robot. ICCG, (pp. 59-62), 2019.

[14] Tovar, B., Murrieta-Cid, R., LaValle, S. M. Distance-
optimal navigation in an unknown environment with-
out sensing distances. Robotics IEEE Transactions,
23(3):506–518, 2007.

[15] Wei, Q., Ta, X. Walking an Unknown Street with Lim-
ited Sensing International Journal of Pattern Recogni-
tion and Artificial Intelligence, 1959042, 2019.

18

ICCG 2020, Tehran, February 16, 2020

Appendix

Proof of lemma 3

In each funnel case, the robot moves some steps towards gr

or gl, alternatively.
In the alternative movement, one of the directions is cor-

rect and the other is a deviation. Assume that at point pi

when a funnel case arises the robot moves toward gr while
the target is behind gl. The robot achieves point pi+1. In
order to achieve the target, it should traverse at least dis-

tance δ =
√

pip2
i+1 + piv2

l − 2pipi+1pivl cos φ, by the law of

cosines, see Figure 3(a). It can be verified that δ is strictly
increasing as a function of φ by taking the derivative with
respect to φ where 0 ≤ φ < π.

Proof of Theorem 4

In a funnel case, when the opening angle φ is adequately
near to π, the simple robot can only move towards left or
right. Searching the target in the street in the limited case is
similar to searching a line. So walking in street is at least as
hard as searching a point on a line. Then, the competitive
ratio of 9 is the lower bound for leading the robot in street,
see Figure 3(b). From Lemma 3, there is a further deviation
from the shortest path for large opening angles. The angle
never exceeds π. Then, for computing a competitive factor,
we consider it equals π. Starting from s, the robot moves one
step towards gr, then moves 1+2 steps towards gl, and again
moves forth 2+22 steps towards gr, moves back 22+23 steps
towards gl, and so on. In other words, the robot moves back
and forth on the line that contains gl and gr such that the
distance to the start point s doubles until the critical point
is reached. By Theorem 2, the competitive factor for the
search strategy is 9. Then, the problem of walking in street
polygons for a simple robot in the worst-case coincides with
the searching a point on a line problem. So, the ratio of 9 is
optimal.

Proof of Theorem 5

As shown in Theorem 4, in the worst case, when φ comes
close to π, our problem is similar to the problem of searching
on the line and our deterministic strategy coincides with
the doubling strategy. In the first randomized strategy by
choosing the direction of the first movement u.a.r, we have
two cases depend on which direction is selected and each of
which makes the robot traveling different distances. In the
worst case, the critical point is on the n = 2k + δ (where k
is an integer and δ is a real value satisfying 0 < δ < 1) from
the origin and the greatest distance for search is taken. Let
m be the first stage where robot travels distance at least 2k

on the same path as the critical point exists. The value m
satisfies m ∈ {k, k + 1}. At the beginning of the search, the
algorithm chooses a random direction, so Prob(m = c) = 1

2

for c = k, k + 1. If D is the random variable denoting the
distance traveled by the randomized strategy, then it is easy
to see that when m = c we have

D = 2

c∑

i=0

2i + n

and the expected values calculated as

E[D|m = c] = D

E[D] =

k+1∑

c=k

Prob(m = c)E[D|m = c]

Thus, the resulting expected distance traveled is

E[D] =
1

2
[2

k+1∑

i=0

2i + n] +
1

2
[2

k∑

i=0

2i + n]

=
1

2
[2(2k+2 − 1) + 2k + δ] +

1

2
[2(2k+1 − 1) + 2k + δ]

=
1

2
[(9)2k − 2 + δ] +

1

2
[(5)2k − 2 + δ]

=
1

2
[(14)2k + 2δ − 4] = (7)2k + δ − 2

≤ 7(2k + δ) = 7n

19

20

ICCG 2020, Tehran, February 16, 2020

On Connecting with Neighborhoods: Complexity and Algorithms

Arash Ahadi∗ Alireza Zarei†

Abstract

Uncertainty of the location of a point can be modeled
by a region. In this case, a routing problem on im-
precise points is equivalent to finding a tour over their
corresponding regions. Finding shortest paths and min-
imum spanning trees are two well-known such problems.
We consider the worst and best cases of some versions
of these two problems and prove their NP-Hardness in
sharp cases. Also, we discuss their accurate polynomial-
time approximation algorithms.

1 Introduction

Erroneous measurement offered by real measurement
sensors is always a challenge in designing optimal al-
gorithms on such imprecise data. In the literature, the
term imprecise data is also used instead of uncertainty
by researchers. As a natural model of uncertainty in
geometric inputs, an imprecise point is represented by a
region which is assumed to contain the point with high
probability.

We denote by [N] the set of numbers {1, 2, ..., N}. A
set of imprecise points P = {pi, | i ∈ [k]} is given by a
set of regions R = {Ri|i ∈ [k]}, where Ri contains pi.
In this paper, we study the minimum spanning tree and
the shortest path problems on such imprecise data.

The minimum spanning tree with neighborhoods prob-
lem (MSTN), is to locate the position of each point
pi ∈ P on a point of Ri, such that the minimum span-
ning tree on these points has the minimum possible
cost. MSTN was introduced by Yang et al. in [11], who
proved NP-hardness of the problem and gave several ap-
proximation algorithms and a PTAS when the regions
R are disjoint unit disks. This NP-hardness result was
also proved by Löffler and van Kreveld [8] in a different
technique. Disser et al. proved that MSTN does not
admit an FPTAS, even if the regions are horizontally
or vertically aligned line segments [4], and gave some
approximation results for the rectilinear MSTN. They
also proposed considering MSTN in the worst case as
an interesting open problem, which was then consid-
ered by Dorrigiv et al. [5]. The maximizing minimum
spanning tree with neighborhoods (max-MSTN) problem

∗Department of Mathematical Science, Sharif University of
Technology, arash.ahadi1@student.sharif.ir
†Department of Mathematical Science, Sharif University of

Technology, zarei@sharif.ir

is to compute the worst case of MSTN; that is to lo-
cate the positions of points P , such that the minimum
spanning tree has the maximum possible cost. In view
of uncertainty, the answers of MSTN and max-MSTN
are respectively lower and upper bounds on the weight
of the minimum spanning tree of the graph regardless
of the actual locations of the imprecise points. Dorri-
giv et al. proved the non-existence of any FPTAS for
max-MSTN, when the underlying regions are disjoint
disks [5] and appreciated studying the problem for other
shapes like line segments, as future research problems.
See [12] as a recent research on this problem in operation
research field.

In the above discussion, the underlying graph of the
MSTN problem was implicitly considered as a complete
graph, in which there is an edge between any pair of
points (regions). MSTN and max-MSTN problems have
been considered in general cases when the underlying
graph is not complete [2, 3, 4]. In such cases, a graph
G = (R, E) is given, where its vertex set is a set of
imprecise points P = {pi|i ∈ [k]}, represented by the
regions R = {Ri|i ∈ [k]}, and each edge (Ri, Rj) ∈ E
means that traversing from a point in Ri to a point
in Rj , or vice versa, is allowed. However, the preced-
ing definition of the MSTN or max-MSTN problems are
special cases of this one in which the graph is complete.

In this paper, we prove that max-MSTN is NP-hard,
when the regions are horizontally or vertically aligned
unit line segments and the underlying graph G is 3-
regular. Note that if the maximum degree of G is 2,
the problem has a simple polynomial time algorithm for
line segments even for arbitrary polygonal uncertainty
regions (subsection 5.3 in [9]). Thus, 3-regularity in this
problem is a sharp bound.

The shortest path is another problem which we
consider on imprecise data. The minimum shortest
path with neighborhoods problem between two imprecise
points pi and pj on a graph G = (R, E), is to locate the
position of any point pl ∈ P on a point in Rl for every
l, such that the shortest path from pi to pj (supporting
the edges of E) has the minimum possible length.

A special case of this problem was considered more
than one decade earlier as touring polygons problem
(TPP); that was introduced by Dror et al. in [6]. In
this case, the graph G is a path from R1 to Rk; the first
and the last regions are respectively single points s and
t (have no uncertainty). Then, the minimum shortest
path problem is to find a shortest tour from s to t vis-

21

3rd Iranian Conference on Computational Geometry

iting Ri’s in order. They proved that TPP is NP-hard
for general polygons (non-convex and non-disjoint) and
can be solved in polynomial time when polygons of R
are convex and disjoint [6]. Pan et al. [10] in 2010
proposed a linear time approximation algorithm for dis-
joint non-convex TPP; while the complexity of TPP for
disjoint non-convex polygons was still open. Finally, in
[1] it has been proved that TPP is NP-hard for disjoint
(non-convex) polygons in any Lp norm, and it is asked
whether disjoint TPP remains NP-hard, when the sizes
of all polygons differ polynomially with respect to each
other.

Here and because of the limited space, we only give
the NP-hardness of the max-MSTN on line segments,
but we have already proved that disjoint TPP remains
NP-hard, even if each polygon is made by one or two
unit segments, each of them make a multiple of π4 angle
with the line x = 0, and our proof is shorter and simpler
than both proofs in [6] and [1].

2 Maximizing MSTN on Line Segments

We reduce min-SAT problem to max-MSTN to show its
complexity class. In an input Ψ = (X , C) of min-SAT
problem, we have a set of boolean variables X = {xi|i ∈
[m]} and a set of clauses C = {ci|i ∈ [n]} on these
variables in disjunctive normal form. The goal is to
obtain a true/false assignment to the variables of X ,
such that the minimum possible number of clauses in C
are satisfied. min-SAT is NP-hard, even if each clause
contains at most two literals [7]. By changing every
clause α to α∨α∨α and changing every clause α∨β to
α∨α∨β, the answer of min-SAT does not change (α and
β may be negative literals). So, min-SAT is NP-hard,
when each clause contains exactly three literals.

For a given Ψ = (X , C), we construct an input
GΨ = (R, E) of max-MSTN as follows. For each ci ∈ C,
we add a horizontal unit segment Rci , whose left end-
point lies sufficiently close to the point (0,− 1

4). There-
fore, these segments are parallel with sufficiently small
vertical distance between any pair of consecutive ones.
This distance is only to make them disjoint, and, for
simplicity one can consider them all on a unique seg-
ment from point (0,− 1

4) to (1,− 1
4).

For every xj ∈ X , we put 2n vertical unit segments

Rxj
1
, Rx̄j

1
, Rxj

2
, Rx̄j

2
, . . . , Rxj

n
, Rx̄j

n

from left to right, such that their upper endpoints lie
sufficiently close to the point (L, 1

2). The value of L will
be determined later. Similar to Rci ’s, the horizontal
distance between each pair of consecutive segments in
Rxj

1
, . . . , Rx̄j

n
is sufficiently small; and is considered only

to make them disjoint. Again, for the sake of simplicity,
assume that they all have the same locations.

Finally, for every j ∈ [m−1], we add a unit horizontal
segment Rj on the line y = 0 and in the right side of
the segments Rxj

i
’s and Rx̄j

n
’s(See Figure 1).

These unit segments are the vertices of GΨ. For every
i ∈ [n] and j ∈ [m], if xj ∈ ci, there is an edge in GΨ

between Rci and Rxj
i
, and if (x̄j) ∈ ci, then there is

an edge in GΨ between Rci and Rx̄j
i
. Moreover, the

induced subgraph of GΨ on {Rj |j ∈ [m−1]}∪{Rxj
i
|j ∈

[m], i ∈ [n]} ∪ {Rx̄j
i
|j ∈ [m], i ∈ [n]} is the path

H := Rx1
1
Rx̄1

1
Rx1

2
...Rx̄1

n
R1, Rx2

1
...Rx̄2

n
R2, . . . Rx̄m

n
.

Therefore, in the graph GΨ = (R, E), R is the set of
these unit segments and E is the above edges connecting
these vertices. The maximum degree in GΨ is 3.

Assume that OPT is an optimal solution for GΨ and
T is a minimum spanning tree on this graph for vertex
set OPT .

Lemma 1 Degree of Rci in T is 1, and all edges of H
exist in T .

Proof. At least one of the three joined edges to Rci
exists in T . We show that exactly one of these three
edges exists in T . Let L∗ be an upper bound for total
length of all edges in chain H for all possible positions
of points in regions of H. Recall that L is the horizon-
tal distance between the left endpoint of Rci ’s and the
vertical segments. If the value of L is sufficiently large
(in fact if L > L∗), the length of all three edges of Rci
are too long; such that regardless of the actual positions
of points in OPT , only one edge of each vertex Rci is
selected in T . This along with connectivity requirement
of T imply that all edges of H exist in T . �

The following lemma shows how any point p ∈ OPT
is selected from its corresponding region R′ ∈ R to max-
imize the total cost of T .

Lemma 2 In OPT ,

(i) if R′ ∈ {Rci |i ∈ [n]}, p is the left end point of R′,
and, if R′ ∈ {Rj |j ∈ [m − 1]}, p is the right end
point of R′.

(ii) each point p is an endpoint of its corresponding re-
gion.

(iii) opposite endpoints of consecutive vertical segments
of H are selected, i.e., if the upper (resp. lower)
endpoint of a vertical segment is selected the lower
(resp. upper) endpoint of its next adjacent vertical
segment must be selected in OPT . Therefore, for
every j ≤ m, either “lower endpoint of Rxj

i
and

upper endpoint of Rx̄j
i
” or “upper endpoint of Rxj

i

and lower endpoint of Rx̄j
i
” are selected, for all i ∈

[n].

22

ICCG 2020, Tehran, February 16, 2020

Figure 1: Reducing min-SAT to max-MSTN. ε is a sufficiently small number. In fact, if segment intersections are
permitted in the problem, one can consider ε = 0. However, and for the sake of simplicity, inside proofs, we assume
that ε = 0.

Proof. (i) In GΨ, each region of R′ ∈ {Rci |i ∈ [n]} ∪
{Ri|i ∈ [m − 1]} is only connected to some regions in
{Rx1

1
, ..., Rx̄m

n
}. Based on the locations of these regions,

the cost of T is maximized when the selected point of
each region in {Rci |i ∈ [n]} lies on its left endpoint and
the selected point of each region in {Ri|i ∈ [m− 1]} lies
on its right endpoint.

(ii) Having proved (i), we need to prove this for ver-
tical segments only. For the sake of a contradiction,
assume that the selected point p of the region R′ is not
an endpoint of R′. There may be an edge between R′

and a region R′′ ∈ {Rci |i ∈ [n]}. Let q be the selected
point on R′′ in OPT . Moreover, based on the position
of R′ in H, either R′ in H is adjacent to two vertical
segments or it is adjacent to a vertical segment and a
segment in {Ri|i ∈ [m − 1]}. The only exceptions are
Rx1

1
and Rx̄m

n
which have only one vertical adjacent seg-

ment in H. Let p− and p+ be respectively the selected
points in OPT for the preceding and the succeeding re-
gions of R′ in H. The structure of GΨ forces that all
edge p−p and pp+ must exist in T . Assuming that the
positions of p− and p+ are fixed, and, b is the intersec-
tion point of p−p+ and R′. By moving from b in both
sides along R′ the lengths of both p−b and bp+ are in-
creased. Therefore, |p−p|+|pp+| is maximized when p is
an endpoint of R′. Moreover, when pq also exists in T ,
it is geometrically simple to verify that the maximum
value of |p−p|+ |pp+|+ |pq| occurs at an endpoint of R′.

The cases where R′ is either Rx1
1

or Rx̄m
n

we only need
to maximize |pp+| + |pq| or |p−p| + |pq|, respectively
which trivially happens at an endpoint as well.

(iii): To the contrary, assume that for some j ≤ m
there are two adjacent vertical segments ab and a′b′ in
H such that either both their upper, a and a′, or lower b
and b′ endpoints exist in OPT . Also, assume that these
segments are the first pair on H with this property. If
these segments correspond to regions Rxj

i
and Rx̄j

i
, then

at most one of them is connected to a region Rci in GΨ.
Assume thatRxj

i
is this segment. Then we can select the

other endpoint if Rx̄j
i

in OPT . This selection increases

the total cost of T by

• 1 if the next adjacent region of Rx̄j
i

is Rj , or i = n

and j = m,

• 2 if the next adjacent region of Rx̄j
i

is Rxj
i+1

and

the same endpoints of Rx̄j
i

and Rxj
i+1

have been

selected in OPT ,

• 0 if the next adjacent region of Rx̄j
i

is Rxj
i+1

and

the opposite endpoints of Rx̄j
i

and Rxj
i+1

exist in

OPT.

However, this may decrease the length of the edge
that connects Rcj to the vertical segment Rx̄j

i
(if such

an edge exists in T) from
√
L2 + (3

4)2 to
√
L2 + (1

4)2.

But, this decrement (d =
√
L2 + (3

4)2−
√
L2 + (1

4)2) of

cost is smaller than 1 and 2 and the set of new selected
points results a MST with greater cost than OPT in the
first two cases which is a contradiction.

For the last case, if at most one of the upper endpoints
of the segments from Rx̄j

i
to Rx̄j

n
is connected to Rcj we

reverse all selected endpoints in OPT for segments from
Rxj

i+1
to Rx̄j

n
as done for Rx̄j

i
. Then, the total cost of

H which completely exists in T is increased by 1 and
as the first two cases, the probable cost decrement (d)
is smaller than 1. Therefore, in this case the set of new
selected points results a MST with greater cost than
OPT which is again a contradiction.

Finally, for the last case, if more than one of the upper
endpoints of the segments from Rx̄j

i
to Rx̄j

n
is connected

to Rcj we do not change the position of the selected
point on Rx̄j

i
, but reverse all selected endpoints in OPT

for segments from Rxj
1

to Rxj
i
. Then the total cost of H

is increased by 1. Because we have three literals in cj , at
most one upper endpoint of these segments is connected
to Rcj which means that as previous cases, the probable
cost decrement (d) is smaller than 1. Therefore, again
in this case the set of new selected points results a MST
with greater cost than OPT which is a contradiction.

Therefore, it is impossible to have two points on
the same side of two consecutive vertical segments in
OPT . �

The third part of Lemma 2 implies that for every j ∈

23

3rd Iranian Conference on Computational Geometry

[m], either lower endpoint of Rxj
i
’s and upper endpoints

of Rx̄j
i
’s, or upper endpoint of Rxj

i
’s and lower endpoints

of Rx̄j
i
’s are selected in OPT, for all i.

Now, we describe how to obtain an optimal solution
for Ψ in min-SAT problem from an OPT solution of
max-MSTN on GΨ.

For every i ∈ [m], the value of xi is set to true if and
only if the lower endpoint of Rxi

j
is selected in OPT .

The third part of Lemma 2 shows that the assignment
to xi is well-defined. We prove that this assignment is
an optimal assignment for Ψ in min-SAT if and only if
OPT is an optimal solution for GΨ of max-MSTN.

Let ei for every i ∈ [n] be the selected edge adja-
cent to its corresponding region Rci . The weight of T
is equal to the sum of the lengths of the edges of H, de-
noted by length(H), plus the lengths of e1, ..., en. Triv-
ially, length(H) is a fixed value and independent of the
lengths of ei’s. Let e be the left endpoint of Rci and ab
is the other side region of ei(a vertical region with a as
its upper endpoint). The length of ei is either |ea| or
|eb| which depends on the selected endpoint of the cor-
responding vertical segment. The key point is that for
each i ∈ [n], if the assignment satisfies clause ci, then
the length of ei is |ea|. Otherwise, this length is |eb|.

Therefore, the weight of T is length(H)+(n−k)|ea|+
k|eb|, where k is the number of satisfied clauses. Since
|ea| > |eb|, the maximum weight of T is determined
by the minimum number of clauses that can be satis-
fied. Since min-SAT is NP-hard and our reduction is
polynomial, max-MSTN problem is also NP-hard.

Theorem 3 max-MSTN is NP-hard, even if each re-
gion is a horizontal or a vertical unit line segment, and
the underlying graph is 3-regular.

Proof. The above discussion proves the theorem for
graphs with the maximum degree ∆ = 3. In order to
make a cubic (3-regular) graph, one can add some new
horizontal unit segments on the line y = 0 in region
R′ as shown in Figure 1. Here, R′ is sufficiently far
from the main structure. Any one of these segments is
connected to exactly 3 segments of the main structure
whose degrees are 2. Note that the degree of each vertex
Rci is 3. It is 2 for each vertex Ri. Also, the degree of
each vertex Rxj

i
and each vertex Rx̄j

i
is 2 or 3.

Finally, if the number of necessary edges is not a mul-
tiple of 3, we add several new segments in R′ with suf-
ficiently large distance from other segments, such that
the resulting graph is 3-regular.

In every optimal answer of this graph, since R′ is far
from the other segments, the degree of each segment of
R′ is 1; and the right endpoint of each of them should
be selected. Any one of these points have equal dis-
tances from both endpoints of its corresponding region.
Therefore, these edges add a constant value to the opti-
mal solution T . This means that the optimal answer of

this instance of max-MSTN is equivalent to the optimal
answer of the corresponding min-SAT problem. �

References

[1] A. Ahadi, A. Mozafari and A. Zarei, Touring a sequence
of disjoint polygons: Complexity and extension, Theo-
retical Computer Science, 556: pp. 45-54, 2014.

[2] V. Blanco, E. Fernandez and J. Puerto, Minimum
spanning trees with neighborhoods, Arxiv, 1611.02918,
2016.

[3] E. Chambers, A. Erickson, S. Fekete, J. Lenchner, J.
Sember, S. Venkatesh, U. Stege, S. Stolpner, C. Weibel,
and S. Whitesides, Connectivity graphs of uncertainty
regions, in Proceedings of the International Symposium
on Algorithms and Computation (ISAAC), LNCS 6507,
pp. 434-445, 2010.

[4] Y Disser, M Mihalk, S Montanari and P. Widmayer,
Rectilinear Shortest Path and Rectilinear Minimum
Spanning Tree with Neighborhoods, Combinatorial Op-
timization. ISCO 2014, p. 208-220, 2014.

[5] R. Dorrigiv, R. Fraser, M. He, S. Kamali, A. Kawa-
mura, A. Lopez-Ortiz and D. Seco, On Minimum-
and Maximum-Weight Minimum Spanning Trees with
Neighborhoods, Theory of Computing Systems volume
56, p. 220-250, 2015.

[6] M. Dror, A. Efrat, A. Lubiw and J.S.B. Mitchell, Tour-
ing a sequence of polygons, in Proc. 35th Annu. ACM
Sympos. Theory Comput., California, USA, pp. 473-
482, 2003.

[7] R. Kohli, R. Krishnamurti and P. Mirchandani, The
Minimum Satisfiability Problem, SIAM J. Discrete
Mathematics, 7, pp. 275-283, 1994.

[8] M. Löffler and M. van Kreveld, Largest and smallest
convex hulls for imprecise points, Algorithmica 56, pp.
235-269, 2010.

[9] S. Montanari, Computing routes and trees under un-
certainty, PhD Dissertation, ETH Zurikh, No. 23042,
2015.

[10] X. Pan, F. Li and R. Klette, Approximate shortest
path algorithms for sequences of pairwise disjoint sim-
ple polygons, CCCG’10, pp. 175-178, 2010.

[11] Y. Yang, M. Lin, J. Xu, and Y. Xie, Minimum Spanning
Tree with Neighborhoods, Proceedings of Algorithmic
Aspects in Information and Management: Third Inter-
national Conference, AAIM, pp. 306-316, 2007.

[12] V. Blancoa E. Fernandezb and J. Puertoc, Minimum
Spanning Trees with neighborhoods: Mathematical
programming formulations and solution methods, Eu-
ropean Journal of Operational Research 262 (3), p. 863-
878, 2017.

24

ICCG 2020, Tehran, February 16, 2020

Planar Euclidean TSP via Snowflake Tree

Sepideh Aghamolaei∗ Mohammad Ghodsi†

Abstract

Given a set of points P in the Euclidean plane, the
Euclidean Steiner tree is the embedded tree of minimum
weight that connects the points of P , but is allowed to
have vertices other than the points of P . The Euclidean
traveling salesman problem (ETSP) asks for the tour of
minimum length that visits every vertex once.

We define the snowflake tree as the Euclidean Steiner
tree with orthogonal edges. Using this tree in the TSP
construction algorithm based on doubling the edges
of MST, we compute a constant factor approximation
ETSP tour with a planar embedding, which the original
doubling algorithm does not guarantee.

1 Introduction

The traveling salesman problem (TSP) takes as input
a set of points P and computes a cycle on P that vis-
its all the vertices and the sum of all the edge weights
is minimized [11]. TSP is NP-hard in general case, in
the metric case, and in the Euclidean case [11]. Metric
TSP has a 2-approximation based on doubling the edges
of a MST and shortcutting them, a 3/2-approximation
based on doubling and shortcutting the union of the
edges of a MST and a matching.

Euclidean TSP (ETSP) has a PTAS ((1 + ε)-
approximation) [1]. The nonself-intersecting tours in
the algorithm of [1] guarantees the resulting tour does
not have any intersections between its edges. This re-
sult was later improved to have a polynomial time in ε
and n [2, 9].

The Steiner tree problem takes as input a point set
P and a set of Steiner points S, and computes a tree
with the minimum cost that contains all the vertices
of P and any subset of S [11]. A geometric Steiner
tree or Euclidean Steiner tree is an embedded tree that
connects a set of points P with the minimum cost, where
it is allowed to add arbitrary points of the Euclidean
plane as Steiner points. There are PTAS algorithms for
Euclidean Steiner tree [1, 2, 9].

In Figure 1, a snowflake tree is shown, and the TSP
built from that tree is shown in Figure 4. An MST of

∗Department of Computer Engineering, Sharif University of
Technology, aghamolaei@ce.sharif.edu
†Department of Computer Engineering, Sharif University of

Technology, ghodsi@sharif.edu

the same point set is drawn in Figure 2, with the TSP
constructed from it in Figure 3.

Figure 1: A snowflake tree.

Figure 2: A minimum spanning tree.

Figure 3: A TSP built from MST.

Figure 4: A TSP built using a snowflake tree.

We design a deterministic approximation algorithm
for ETSP such that the edges of the TSP tour do not
intersect in their original embedding in the Euclidean
plane. Our algorithm takes O(n2 log n) time, and has
approximation factor 52.1. The time complexities of the

25

3rd Iranian Conference on Computational Geometry

previous algorithms (PTASs) were n(log n)O(1/ε) (ran-
domized), n(log n)O(1/ε)+O(n2) (deterministic) [2], and

O(n log n) + n(
√

2/ε)O(
√
2/ε) (randomized) [9].

2 Preliminaries

Segments Voronoi diagram (SVD). Given a set of
segments, their Voronoi diagram is a diagram where
each cell represents the points with the same nearest
segment. The segments Voronoi diagram can be con-
structed in O(n log n) time and O(n) space, and a near-
est neighbor query takes O(log n) time [4]. The incre-
mental construction of a SVD takes O(n log n) time [3].

Diameter of a point-set. The diameter of a point-set
is the length of the segment connecting two points from
this set with maximum distance. Computing the diame-
ter takes O(n log n) time, by computing the convex hull
of points [4] and then using the algorithm of [10].

Steiner tree (ST). Given two sets of vertices R and
S, the goal is to connect the vertices of R with the
smallest total length, using any number of vertices from
S. This problem is NP-hard and has a 2-approximation
algorithm [11].

Minimum rectilinear Steiner tree problem (MRST).
In the MRST problem, we are given a set of points and
the goal is to connect these points using axis-aligned
(vertical or horizontal) line segments such that the over-
all length of the line segments is minimized. The Steiner
points are the points of the Hanan grid, which is the ir-
regular grid constructed by drawing lines parallel to the
axes [6]. The decision version of this problem is NP-
complete [7]. Other than its PTASs [1, 2, 9], it has
a (1.267 + ε)-approximation algorithm with O(n log2 n)
time [8].

Rectilinear minimum spanning tree (RMST). The
minimum spanning tree using `1 distance is called the
rectilinear minimum spanning tree problem, and it can
be constructed in O(n log n) time [5].

The difference between MRST and RMST is that in
RMST a common segment between two rectilinear `1
distances is summed twice, while in RMST it is summed
once. The Steiner ratio is the maximum ratio of the
weight of MST to the weight of the Steiner tree. The
Steiner ratio of MRST and RMST is at most 3/2 [7].

Doubling and Shortcutting for TSP and ST. Replac-
ing each edge of a tree with two edges is called doubling,
which converts the tree into an Eulerian graph [11]. This
Eulerian tour is then used as a 2-approximation for TSP.
Shortcutting is removing the Steiner or repeated ver-
tices of this tour [11].

3 Snowflake Tree

The difference between the snowflake tree and the min-
imum rectilinear Steiner tree is that the edges of the
snowflake tree are not required to be parallel to one of
the axes of the coordinate system.

3.1 The Snowflake Tree of 3 Points

The snowflake tree of 3 points can add at most 3 Steiner
vertices (Figure 5).

Figure 5: The 4 cases of the snowflake trees of 3 points.

Theorem 1 The snowflake tree of the vertices of a
right triangle is the tree consisting of the sides of the
right angle.

Proof. Assume the catheti have lengths a and b.
When no Steiner vertices are used, the two shorter

edges of the triangle are the solution, so the cost is a+b.
Using one Steiner point, because one edge of the tree has
to be an edge of the triangle, there is only one new case:
when we draw the altitude opposite to the hypotenuse.
Let h be the length of this perpendicular. The cost of
this case is:

√
a2 + b2 + ab√

a2+b2
, since the length of the

altitude is ab√
a2+b2

, using the formulas for the area of a

triangle: ab
2 and h

√
a2+b2

2 . Computing the square of this

length gives the following value: (
√
a2 + b2+ ab√

a2+b2
)2 =

a2+b2+2ab+(ab√
a2+b2

)2, which is more than the square

of the cost of the solution with no Steiner points, which
is (a + b)2 = a2 + b2 + 2ab. We discuss the case with 2
Steiner points as a special case of the case with 3 Steiner
points, where one of the Steiner points lies on a vertex
of the triangle. The case with 3 Steiner points, we name
the altitudes as shown in Figure 6.

h1 h3

h2

a b

h
α

Figure 6: The case with 3 Steiner points (Theorem 1).

Using triangle similarity and trigonometry, the sum
of the lengths of the edges in this case is:
h1 + h2 + h3 + h2| cot(α)| + h1| cot(α)| + h1| tan(α)| +
h3| tan(α)|
= h1(1+ | cot(α)|+ | tan(α)|)+h2(1+ | cot(α)|)+h3(1+
| tan(α)|).

26

ICCG 2020, Tehran, February 16, 2020

The length of the catheti can be written in terms of
h1, h2, h3 and α as follows: a = h1

| sin(α)| + h2

| sin(α)| , b =
h1

| cos(α)| + h3

| cos(α)| . We use these equalities to remove h2
and h3 from the formula: h2 = a| sin(α)| − h1, h3 =
b| cos(α)| − h1. Substituting these values in the cost of
this case gives:

h1(1 + | cot(α)|+ | tan(α)|)
+ (a| sin(α)| − h1)(1 + | cot(α)|)
+ (b| cos(α)| − h1)(1 + | tan(α)|)
= −h1 + a(| sin(α)|+ | cos(α)|) + b(| cos(α)|+ | sin(α)|)
= −h1 + (a+ b)(| sin(α)|+ | cos(α)|).

Assume the notation hM = min(a| sin(α)|, b| cos(α)|).
Taking the minimum over parameters h1 and α gives us
the answer to this case:

min
α∈[0,π],
h1≤hM

−h1 + (a+ b)(| sin(α)|+ | cos(α)|)

= min
α∈[0,π]

−hM + (a+ b)(| sin(α)|+ | cos(α)|)

where the inequality uses the fact that h1 is independent
from α, other than its range. If a| sin(α)| ≤ b| cos(α)|:

min
α
a| cos(α)|+ b(| sin(α)|+ | cos(α)|)

min
α
| cos(α)|(a+ b) + | sin(α)|b = a+ b.

Since a + b ≥ b, then | cos(α)| = 1, | sin(α)| = 0 is the
optimal solution and α = 0.

Otherwise (a| sin(α)| ≥ b| cos(α)|):

min
α
a(| sin(α)|+ | cos(α)|) + b| sin(α)|

min
α

(a+ b)| sin(α)|+ a| cos(α)| = a+ b.

Since a + b ≥ a, then | sin(α)| = 1, | cos(α)| = 0 is the
optimal solution and α = π

2 . So, the optimal solution
of this case is the same as the first case (with 0 Steiner
points). �

3.2 Approximate Snowflake Tree

In Algorithm 1, weight denotes the weight of the tree,
which is the sum of the lengths of its edges.

Theorem 2 Algorithm 1 is a (β+ε)-approximation for
snowflake tree, using an β-approximation MRST.

Proof. Since all the edges of a snowflake tree are per-
pendicular, if the direction of one edge is determined,
the two possible directions of all the edges are also deter-
mined. Therefore, computing the MRST in the rotated
coordinates finds the optimal solution, if all the angles

Algorithm 1 Approximate Snowflake Tree

Input: A point set P , a constant ε > 0
Output: T : an approximate snowflake tree of P

1: cost =∞, k = d
√
2π√
ε

+
√

2πe
2: for i = 1, . . . , k do
3: Rotate the coordinates by i 2πk clockwise.
4: Compute an approximate MRST.
5: if cost > weight(MRST) then
6: T ←MRST, cost← weight(MRST)

7: return T

are checked. However, we use an α-approximation of
MRST. We only check k angles in the algorithm, so
the length of each edge is at most 1

cos(2π
k)

times its

value in the direction of the optimal solution. Us-
ing the Taylor series expansion of the cosine function,

cos(θ) ≥ 1 − θ2

2 , for small enough θ. To guarantee a
(1 + ε)-approximation, the value of k must satisfy the
following inequality: 1

cos(2π
k)
≤ 1 + ε. Relaxing the in-

equality by the bound on the cosine function and rear-
ranging the terms gives: 1

1+ε ≥ cos(2π
k) ≥ 1 − 1

2 (2π
k)2.

So,
√
2π
√
1+ε√
ε

≤ k. Using
√

1 + ε ≤ 1 +
√
ε, we have

√
2π√
ε

+
√

2π ≤ k. This approximation factor is multi-

plied by β, which gives β +O(ε). �

The time complexity of Algorithm 1 using RMST is
O(kn log n) and its approximation factor is 3

2 + ε, since
the time complexity of computing a RMST is O(n log n)
and the Steiner ratio of MRST is 3

2 [7]. Using the MRST
of [8], the approximation factor is 1.267+ε and the time
complexity is O(kn2 log n).

3.3 Greedy Approximation Algorithm

Algorithm 2 builds an approximate snowflake tree, and
we prove its approximation factor in Theorem 3.

Algorithm 2 Snowflake Tree

Input: A point set P
Output: T , the snowflake tree of P
1: Add the diameter of P to T
2: while graph T is disconnected do
3: p = arg minq∈P mine∈T d(q, e)
4: Add p to T with the perpendicular from p to T .

Theorem 3 Algorithm 2 builds a 32
√
2+24

√
3

5 -
approximation snowflake tree.

Proof. We convert the optimal snowflake tree to the
output of Algorithm 2 by first replacing its longest edge
e with the diameter d of the point set, and connecting
the adjacent vertices of e to d, and the rest of the vertices

27

3rd Iranian Conference on Computational Geometry

to the previous edges, rotated in the direction of d or
perpendicular to d. Using triangle inequality, the length
of the edges other than e is at most multiplied by

√
2.

Then, we flip the longest edge of the optimal tree on
either side of d recursively to get the snowflake tree.
Each flip adds a factor at most as much as the ratio of
the cases with 0 Steiner points and 1 Steiner point in
the proof of Theorem 1:

√
a2 + b2 + ab√

a2+b2

a+ b
=

√
1 +

a2b2

(a+ b)2(a2 + b2)
≤

√
9

8
.

(happens at a = b). The approximation factor is at

most
√

2
∑n
i=0((

√
9
8)
√
3
2)i ≤ 32

√
2+24

√
3

5 ≤ 17.4, since

the maximum distance of the points in a subproblem of

v, to T is at most
√
3
2 times the diameter of v. �

Theorem 4 Algorithm 2 takes O(n log n) expected time
and O(n2 log n) worst-case time.

Proof. Based on the construction of a snowflake tree,
each vertex other than the diameter endpoints can add
at most one vertex. So, the number of Steiner vertices is
at most n−2. By keeping a SVD of T at each step of the
algorithm, the point with maximum distance from T can
be found in O(log n) time. The incremental construc-
tion of a SVD takes O(n log n) time. If we reconstruct
the SVD after each insertion, the time complexity of the
algorithm becomes O(n2 log n). �

Without an incremental SVD, it takes O(n|T |) time to
compute the farthest point to existing centers by check-
ing all the center-point distances. So, the overall time
complexity of the algorithm becomes

∑n
i=1 i·n = O(n3).

4 TSP via Snowflake Tree

Algorithm 3 uses the doubling and shortcutting algo-
rithm of [11] to compute an approximate TSP.

Algorithm 3 TSP via Snowflake Tree

Input: A point set P
Output: T : a TSP tour of P
1: Build a snowflake tree of P (Algorithm 2)
2: Double the edges of the snowflake tree and compute

a TSP by shortcutting.

Theorem 5 The TSP constructed from an Euclidean
Steiner tree is a 2-approximation.

Proof. By doubling the edges of the tree and short-
cutting, it is possible to prove that the weight of the
TSP tour is at most twice the weight of the Euclidean
Steiner tree. The weight of the Euclidean Steiner tree
is less than the optimal TSP, since the optimal TSP

minus an edge is one of the possible solutions of the
Euclidean Steiner tree, and the minimum of that set is
the Euclidean Steiner tree. Therefore, the weight of the
optimal TSP is between the weight of the optimal Eu-
clidean Steiner tree and twice the weight of the optimal
Euclidean Steiner tree. �
Using Theorems 3 and 5 and the Steiner ratio, the ETSP
constructed via doubling the snowflake tree of Algo-

rithm 2 has approximation factor 2· 32 32
√
2+24

√
3

5 ≤ 52.1.

Theorem 6 The TSP constructed from a snowflake
tree of Algorithm 2 is a planar embedding.

Proof. The diameter is a single segment, so it satis-
fies the conditions. Points on each side of the diameter
are closer to the diameter than segments on the other
side. So, we can solve the problem by only considering
points on each side. The theorem holds for the per-
pendiculars from the points to the diameter, so, each of
these subproblems can be considered as an instance of
the original problem. By induction on the size of T , the
proof is concluded. �

References

[1] S. Arora. Polynomial time approximation schemes for
Euclidean TSP and other geometric problems. In Pro-
ceedings of the 37th Annu. IEEE Sympos. Found. Com-
put. Sci., pages 2–11. IEEE, 1996.

[2] S. Arora. Nearly linear time approximation schemes
for Euclidean TSP and other geometric problems. In
Proceedings of the 38th Annu. IEEE Sympos. Found.
Comput. Sci., pages 554–563. IEEE, 1997.

[3] J.-D. Boissonnat and M. Yvinec. Algorithmic geometry.
Cambridge university press, 1998.

[4] M. De Berg, M. Van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational geometry. In Com-
putational geometry, pages 1–17. Springer, 1997.

[5] L. J. Guibas and J. Stolfi. On computing all north-east
nearest neighbors in the L1 metric. Inform. Process.
Lett., 17(4):219–223, 1983.

[6] M. Hanan. On Steiner’s problem with rectilinear dis-
tance. SIAM J. Appl. Math., 14(2):255–265, 1966.

[7] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner tree problem. number 53 in annals of discrete
mathematics, 1992.

[8] M. Karpinski and A. Zelikovsky. New approximation
algorithms for the Steiner tree problems. J. Comb. Op-
tim., 1(1):47–65, 1997.

[9] S. B. Rao and W. D. Smith. Approximating geometrical
graphs via “spanners” and “banyans”. In Proceedings of
the 30th Annu. ACM Sympos. Theory Comput., pages
540–550. ACM, 1998.

[10] M. Shamos. Computational geometry Ph. D. O Thesis,
Yale University, 1978.

[11] V. V. Vazirani. Approximation Algorithms. Springer
Science and Business Media, 2013.

28

ICCG 2020, Tehran, February 16, 2020

Fréchet Distance Queries in Trajectory Data

Joachim Gudmundsson∗ André van Renssen∗ Zeinab Saeidi† Sampson Wong∗

Abstract

Let π be a trajectory with n vertices in the plane. We
show how to preprocess π such that given any two points
u and v on π (not necessarily vertices of π) and a hori-
zontal query segment Q, one can quickly determine the
exact Fréchet distance between Q and the subtrajec-
tory from u to v. We present a data structure that
requires O(n2 log2 n) construction time and space such
that queries can be answered in O(log8 n) time.

1 Introduction

The Fréchet distance is a popular measure of similar-
ity between curves as it takes into account the loca-
tion and ordering of the points along the curves, and it
was introduced by Maurice Fréchet in 1906. Measuring
the similarity between curves is an important problem
in many areas of research, including computational ge-
ometry, computational biology [12], data mining, image
processing [11] and geographical information science [9].

The Fréchet distance is most commonly described as
the dog-leash distance; consider a man standing at the
starting point of one trajectory and the dog at the start-
ing point of another trajectory. A leash is required to
connect the dog and its owner. Both the man and his
dog are free to vary their speed, but they are not al-
lowed to go backward along their trajectory. The cost
of a walk is the leash length required to connect the dog
and its owner from the beginning to the end of their tra-
jectories. The Fréchet distance is the minimum length
of the leash that is needed over all possible walks. More
formally, for two curves A and B each having complex-
ity n, the Fréchet distance between A and B is defined
as:

δF (A,B) = inf
µ

max
a∈A

dist(a, µ(a))

where dist(a, b) denotes the Euclidean distance between
point a and b and µ : A → B is a continuous and non-
decreasing function that maps every point in a ∈ A to
a point in µ(a) ∈ B.

∗School of Computer Science, University of Sydney,
Australia, {joachim.gudmundsson, andre.vanrenssen,

swon7907}@sydney.edu.au
†Combinatorial and Geometric Algorithms Lab, Depart-

ment of Mathematical Sciences, Yazd University, Yazd, Iran
zsaeidi2007@gmail.com

Since the early 90’s the problem of computing the
Fréchet distance between two polygonal curves has re-
ceived considerable attention. In 1992 Alt and Go-
dau [1] were the first to consider the problem and gave
anO(n2 log n) time algorithm for the problem. The only
improvement since then is a randomized algorithm with
running time O(n2(log log n)2) in the word RAM model
by Buchin et al. [4]. In 2014 Bringmann [2] showed
that, conditional on the Strong Exponential Time Hy-
pothesis (SETH), there cannot exist an algorithm with
running time O(n2−ε) for any ε > 0. Even for realis-
tic models of input curves, such as c-packed curves [7],
exact distance computation requires n2−o(1) time under
SETH [2]. Only by allowing a (1 + ε)-approximation
can one obtain near-linear running times in n and c on
c-packed curves [3, 7].

Querying the Fréchet distance between a given trajec-
tory and a query trajectory has been studied [5, 7, 8],
but due to the difficult nature of the query problem,
data structures only exist for answering a restricted
class of queries. The two most relevant results are
the following. The first is De Berg et al.’s [6] data
structure, which answers Fréchet distance queries be-
tween a horizontal query segment and a vertex-to-vertex
subtrajectory of a preprocessed trajectory. Their data
structure can be constructed in O(n2 log2 n) time using
O(n2 log2 n) space such that queries can be answered
in O(log2 n) time. The second is Driemel and Har-
Peled’s [7] data structure, which answers approximate
Fréchet distance queries between a query trajectory of
complexity k and a vertex-to-vertex subtrajectory of a
preprocessed trajectory. The data structure can be con-
structed in O(n log3 n) using O(n log n) space, and a
constant factor approximation to the Fréchet distance
can be answered in O(k2 log n log(k log n)) time. In the
special case when k = 1, the approximation ratio can be
improved to (1+ε) with no increase in preprocessing or
query time with respect to n. Other query versions for
the Fréchet distance have also been considered [5, 8].

In this paper, we answer exact Fréchet distance
queries between a subtrajectory (not necessarily vertex-
to-vertex) of a preprocessed trajectory and a horizon-
tal query segment. The data structure can be con-
structed in O(n2 log2 n) time using O(n2 log2 n) space
such that queries can be answered in O(polylog n) time.
We use Megiddo’s parametric search technique [10] and
De Berg et al.’s [6] data structure to compute the
Fréchet distance.

29

3rd Iranian Conference on Computational Geometry

2 Preliminaries

Let p1, . . . , pn be a sequence of n points in the plane. We
use π = (p1, p2 . . . , pn) to denote the polygonal trajec-
tory defined by this sequence. Let x0 ≤ x1 and y ∈ R,
and define p = (x0, y) and q = (x1, y) so that Q = pq is
a horizontal segment in the plane. Let u and v be two
points on the trajectory π, π[u, v] denotes the subtra-
jectory of π that starts at u and ends at v. Following
De Berg et al. [6], the Fréchet distance between π[u, v]
and Q can be computed by using the formula:

δF (π[u, v], pq) = max{‖up‖, ‖vq‖, δ−→
h

(π[u, v], pq),

B(π[u, v], y)}.

The first two terms are simply the distances between
the starting points of the two trajectories, and the end-
ing points of the two trajectories. The third term is
the directed Hausdorff distance between π[u, v] and Q,
which can be computed as follows:

δ−→
h

(π[u, v], Q) = max{ max
pi.x∈(−∞,x0]

‖p− pi‖,

max
pi.x∈[x1,∞)

‖q − pi‖,max
i
‖y − pi.y‖}.

where pi in the formula above is a vertex of the subtra-
jectory π[u, v], and pi.x is its x-coordinate. The formula
handles three cases for mapping every point of π[u, v] to
its closest point on Q. The first term describes mapping
points of π[u, v] to the left of p to their closest point p.
The second term describes mapping points of π[u, v] to
the right of q analogously. The third term describes
mapping points of π[u, v] that are in the vertical strip
between p and q to their orthogonal projection onto Q.

The fourth term in our formula for the Fréchet dis-
tance is the maximum backward pair distance over all
backward pairs. A pair of vertices (pi, pj) (with j > i) is
a backward pair if pj lies to the left of pi. The backward
pair distance of π[u, v] can be computed from:

B(π[u, v], y) = max
∀pi,pj∈π[u,v]:i≤j,pi.x≥pj .x

B(pi,pj)(y),

where B(pi,pj)(y) is the backward pair distance for a
given backward pair (pi, pj) and is defined as

B(pi,pj)(y) = min
x∈R

max{‖pi − (x, y) ‖, ‖pj − (x, y) ‖}.

The distance terms in the braces compute the dis-
tance between a given point (x, y) and the farthest of pi
and pj . Let us call this the backward pair distance of
(x, y). Then the function B(pi,pj)(y) denotes the mini-
mum backward pair distance of a given backward pair
(pi, pj) over all points (x, y) which have the same y-
coordinate. Taking the maximum over all backward
pairs gives us the backward pair distance for π[u, v].

In Figure 1, we show for each y-coordinate the point
with the minimum backward pair distance (left), and
the magnitude of this minimum distance (right). We
see in the figure that the function B(pi,pj)(y) consists of
two linear functions joined together in the middle with
a hyperbolic function.

pi

pj

pi.y

pj.y

y

B(pi,pj)
(y)

Figure 1: For each y-coordinate, Left: the point with
minimum backward pair distance, Right: the minimum
backward pair distance.

In order to apply parametric search, we are required
to construct a set of critical values (which we will de-
scribe in detail at a later stage) so that an optimal solu-
tion is guaranteed to be contained within this set. Since
this set of critical values is often large, we need to avoid
computing the set explicitly, but instead design a deci-
sion algorithm that efficiently searches the set implicitly.
Megiddo’s parametric search [10] states that if:

• the set of critical values has polynomial size, and

• the Fréchet distance is convex with respect to the
set of critical values, and

• a comparison-based decision algorithm decides if a
given critical value is equal to, to the left of, or to
the right of the optimum,

then there is an efficient algorithm to compute the op-
timal Fréchet distance in O(PTp + TpTs logP) time,
where P is the number of processors of the (parallel)
algorithm, Tp is the parallel running time and Ts is the
serial running time of the decision algorithm. For our
purposes, P = 1 since we run our queries serially, and
Tp = Ts = O(polylog n) for the decision versions of our
query algorithms.

3 Computing the Fréchet Distance

The first problem we apply parametric search to is the
following. Given any horizontal query segment Q in
the plane and any two points u, v on π (not necessarily
vertices of π), determine the Fréchet distance between
Q and the subtrajectory π[u, v].

Let pu be the first vertex of π along π[u, v] and let
pv be the last vertex of π along π[u, v], as illustrated

30

ICCG 2020, Tehran, February 16, 2020

p0

pn

p q

u
v

p′ q′

pu

pv

Figure 2: The points p′ and q′ that are mapped to the
vertices pu and pv of the trajectory.

in Figure 2. If pu and pv do not exist then π[u, v] is a
single segment so the Fréchet distance between π[u, v]
and Q can be computed in constant time. Otherwise,
our goal is to build a Fréchet mapping µ : π[u, v] → Q
which attains the optimal Fréchet distance. We build
this mapping µ in several steps. Our first step is to
compute points p′ and q′ on the horizontal segment pq
so that p′ = µ(pu) and q′ = µ(pv).

If the point p′ is computed correctly, then the map-
ping p′ → pu allows us to subdivide the Fréchet compu-
tation into two parts without affecting the overall value
of the Fréchet distance. In other words, we obtain the
following formula:

δF (π[u, v], pq) = max{δF (upu, pp
′), δF (π[pu, v], p′q)}

(1)
We now apply the same argument to pv. We com-

pute q′ optimally on the horizontal segment p′q opti-
mally so that the mapping pv → q′ does not increase
the Fréchet distance between the subtrajectory π[pu, v]
and the truncated segment p′q. In other words, we have:

δF (π[u, v], pq) = max{δF (upu, pp
′), δF (π[pu, pv], p

′q′),

δF (pvv, q
′q)}

(2)
Now that pu and pv are vertices of π, De Berg et

al. [6] provide an efficient data structure for computing
the middle term δF (π[pu, pv], p

′q′). The first and last
terms have constant complexity and can be handled in
constant time. All that remains is to compute the points
p′ and q′ efficiently.

Theorem 1 Given a trajectory π with n vertices in the
plane. There is a data structure that uses O(n2 log2 n)
space and preprocessing time, such that for any two
points u and v on π (not necessarily vertices of π) and
any horizontal query segment Q in the plane, one can
determine the exact Fréchet distance between Q and the
subtrajectory from u to v in O(log8 n) time.

Proof. Decision Algorithm. Let S be the set of
critical values (defined later in this proof), let s be
the current candidate for the point p′, and let F (s) =
max(δF (ps, upu), δF (sq, π[pu, v])) be the Fréchet dis-
tance between pq and π[u, v] subject to pu being mapped

to s. Our aim is to design a decision algorithm running
in O(log4 n) time that decides whether the optimal p′

is equal to s, to the left of s or to the right of s. This
is equivalent to proving that all points to one side of s
cannot be the optimal p′ and may be discarded.

We use the Fréchet distance formula from Sec-
tion 2 to rewrite F (s) = max(‖up‖, ‖vq‖, ‖pus‖,
δ−→
h

(π[pu, v], sq), B(π[pu, v], y)). Then we check several
cases depending on which of these five terms attains the
maximum value F (s), and in each case we either deduce
that p′ = s or all critical values to one side of s may be
discarded.

• If F (s) = max(‖up‖, ‖vq‖, B(π[pu, v], y)), then
p′ = s. We observe that none of the three
terms on the right hand side of the equation
depend on the position of s. Hence, F (s) =
max(‖up‖, ‖vq‖, B(π[pu, v], y)) ≤ F (p′), and since
F (p′) is the minimum possible value, F (s) = F (p′).
We have found a valid candidate for p′ and can dis-
card all other candidates in the set S.

• If F (s) = ‖pus‖ and pu is to the right (left) of s,
then p′ is to the right (left) of s. We will argue this
for when pu is to the right of s, but an analogous
argument can be used when pu is to the left. We
observe that all points t to the left of s will now have
‖put‖ > ‖pus‖. Hence, F (s) = ‖pus‖ < ‖put‖ ≤
F (t) for all points t to the left of s, therefore all
points to the left of s may be discarded.

• If F (s) = δ−→
h

(π[pu, v], sq), then p′ is to the left
of s. The directed Hausdorff distance maps every
point in π[pu, v] to their closest point on sq, so by
shortening sq to tq for some point t on sq to the
right of s, the directed Hausdorff distance cannot
decrease. Hence, F (s) ≤ F (t) for all t to the right
of s, so all points to the right of s may be discarded.

To determine q′ for a fixed candidate s for p′, we
treat the problem in a similar way. We consider the
subtrajectory π[pu, v] and the horizontal line segment
sq. Defining a function G(t) representing the Fréchet
distance when pv is mapped to t, we obtain a similar
decision algorithm. The most notable difference is that
since we now consider the end of the subtrajectory, the
decisions for moving t left and right are reversed.
Convexity. We will prove that F (s) is convex, and

it will follow similarly that G(t) is convex. It suffices
to show that F (s) is the maximum of convex functions,
since the maximum of convex functions is itself convex.
The three terms ‖up‖, ‖vq‖, B(π[pu, v], y) are constant.
The term ‖pus‖ is an upward hyperbola and is convex.
If suffices to show that δ−→

h
(π[pu, v], sq) is convex.

We observe that the Hausdorff distance
δ−→
h

(π[pu, v], sq) must be attained at a vertex pi of
π[pu, v], and that each δ−→

h
(pi, sq) as a function of s

31

3rd Iranian Conference on Computational Geometry

is a constant function between p and the orthogonal
projection of vertex pi onto the horizontal segment
pq, and a hyperbolic function between the orthogonal
projection of vertex pi onto the horizontal segment pq
and q. Thus, the function for each pi is convex, so the
overall Hausdorff distance function is also convex.

Critical Values. A critical value is a value c which
could feasibly attain the minimum value F (c) = F (p′).
We represent F (s) as the minimum of n simple functions
and then argue that the minimum of F can only occur
at the minimum of one of these functions, or at the
intersection of a pair of these functions.

First, ‖up‖, ‖vq‖, B(π[pu, v], y) are constant functions
in terms of s. Next, ‖pus‖ is a hyperbolic function.
Finally, δ−→

h
(π[pu, v], sq) is not itself simple, but it can

be rewritten as the combination of n simple functions
as described in the above section.

Hence, F (s) is the combination (maximum) of n sim-
ple functions, and these functions are simple in that they
are piecewise constant or hyperbolic. Hence, F (s) at-
tains its minimum either at the minimum of one of these
n functions, or at a point where two of these functions
intersect. Therefore, there are at most O(n2) critical
values for F (s).

Query Complexity. Computing q′ for a given can-
didate s for p′ takes O(log4 n) time: We can compute
the terms ‖up‖, ‖pus‖, ‖vq‖, and ‖pvq′‖ in constant
time. The terms B(π[pu, pv], y) and δ−→

h
(π[pu, pv], sq

′)

can be computed in O(log2 n) time using the exist-
ing data structure by De Berg et al. [6]. We need to
determine the time complexity of the sequential algo-
rithm Ts, parallel algorithm Tp, and the number of the
processors P . To find q′, the decision algorithm takes
Ts = O(log2 n). The parallel form runs on one processor
in Tp = O(log2 n). Substituting these values in the run-
ning time of the parametric search, O(PTp+TpTs logP),
leads to O(log4 n) time.

The above analysis implies that p′ itself can be com-
puted in O(log8 n) time: For a given s, the decision
algorithm runs in Ts = O(log4 n) as mentioned above.
The parallel form of the decision algorithm runs on one
processor in Tp = O(log4 n). Substituting these values
in the running time of the parametric search leads to
O(log8 n) time.

Preprocessing and Space. To compute the sec-
ond term of Formula 2, we use the data structure by De
Berg et al. [6] which uses O(n2 log2 n) space and pre-
processing time and supports O(log2 n) query time. �

4 Concluding remarks

In the full version of the paper we also study the prob-
lem of preprocessing π into a data structure such that
given any length L and two points u, v on π (not nec-
essarily vertices of π), one can efficiently determine the

placement of the horizontal segment Q of length L in
the plane that minimises the Fréchet distance to the
subtrajectory π[u, v]. We show how to preprocess π in
O(n2 log2 n) time and space, such that the above query
can be answered in O(polylog n) time.

References

[1] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. International Journal
of Computational Geometry & Applications, 5(2):75–
91, 1995.

[2] K. Bringmann. Why walking the dog takes time:
Fréchet distance has no strongly subquadratic algo-
rithms unless SETH fails. In Proceedings of the 55th
IEEE Annual Symposium on Foundations of Computer
Science, pages 661–670, 2014.

[3] K. Bringmann and M. Künnemann. Improved approxi-
mation for Fréchet distance on c-packed curves match-
ing conditional lower bounds. International Journal of
Computational Geometry & Applications, 27(1-2):85–
120, 2017.

[4] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer.
Four Soviets walk the dog: Improved bounds for com-
puting the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

[5] M. de Berg, A. F. Cook, and J. Gudmundsson. Fast
Fréchet queries. Computational Geometry, 46(6):747–
755, 2013.

[6] M. De Berg, A. D. Mehrabi, and T. Ophelders. Data
structures for Fréchet queries in trajectory data. In
Proceedings of the 29th Canadian Conference on Com-
putational Geometry, 2017.

[7] A. Driemel and S. Har-Peled. Jaywalking your dog:
computing the Fréchet distance with shortcuts. SIAM
Journal on Computing, 42(5):1830–1866, 2013.

[8] J. Gudmundsson and M. Smid. Fast algorithms for ap-
proximate Fréchet matching queries in geometric trees.
Computational Geometry, 48(6):479–494, 2015.

[9] P. Laube. Computational Movement Analysis. Springer
Briefs in Computer Science. Springer, 2014.

[10] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. In 22nd Annual
Symposium on Foundations of Computer Science (sfcs
1981), pages 399–408. IEEE, 1981.

[11] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya.
Fréchet distance based approach for searching online
handwritten documents. In Proceedings of the 9th Inter-
national Conference on Document Analysis and Recog-
nition, volume 1, pages 461–465, 2007.

[12] T. Wylie and B. Zhu. Protein chain pair simplification
under the discrete Fréchet distance. IEEE/ACM Trans.
Comput. Biology Bioinform., 10(6):1372–1383, 2013.

32

ICCG 2020, Tehran, February 16, 2020

Path Planning with Objectives Minimizing Length and Maximizing Clearance

Mansoor Davoodi∗ Maryam Sanisales∗

Abstract

In this paper, we study the problem of bi-objective path
planning with the objectives minimizing the length and
maximizing the clearance of the path, that is, maximiz-
ing the minimum distance between the path and ob-
stacles. We consider a set of vertical segments as the
obstacles and propose an efficient algorithm for finding
all intervals of Pareto optimal solutions when the fist
objective is evaluated with Euclidean metric and the
second one is evaluated by Manhattan metric. Finally,
we show that the algorithm results in finding (

√
2, 1)-

approximation Pareto optimal solutions when both ob-
jectives are evaluated with Euclidean metric.

1 Introduction

Path Planning (PP) is one of the challenging problems
in the field of robotics. The goal is to find optimal
path(s) for two given start and destination points among
a set of obstacles. However, usually minimizing the
length of the path is considered as the optimality crite-
rion. The application of the problem’s other objectives
such as smoothness and clearance [2], that is maximiz-
ing the distance between the path and obstacles, have
been also considered in the literature [2]. For example,
in many applications, the robot needs to move around
in order to perform its task properly. The need to move
around the environment led to the question of what path
a robot can take to accomplish its task, in addition to
being safe. In this paper, we define the optimal path re-
garding to two objectives minimizing the length of the
path and maximizing the minimum distance between
the path and obstacles.

A classical approach to compute the minimum length
path is computing the visibility graph of obstacles and
convert the problem to a graph search problem. For
a set of n obstacle vertices, the visibility graph can be
computed in O(n2 log n) time using a tree structure and
ray technique [4]. This approach is one of the best-
known algorithms to obtain the shortest path where the
distance between the path and the obstacle is equal to
zero– a path with clearance zero. Also, Hershberger et
al. [5], proposed an efficient planar structure for the PP
problem in O(n log n) time.

∗Department of Computer Sciences and Information Technol-
ogy, Institute for Advances Studies in Basic Sciences, Zanjan,
Iran. mdmonfared@iasbs.ac.ir ; maryamsan@iasbs.ac.ir

Wein et al. [7], by using a combination of the Voronoi
diagram and the visibility graph, introduced a new type
of visibility structure called the Voronoi Visibility Dia-
gram to find the shortest path for a predefined value λ
of clearance. He considered the PP problem in the set-
ting of single objective optimization with the objective
minimizing the length subject to minimum clearance
λ. Geraerts [3] proposed a new data structure called
the Explicit Road Map that creates the shortest pos-
sible path with the maximum possible clearance. The
introduced structure is useful for computing the path
in corridor spaces. Davoodi [1] studied the problem of
bi-objective PP in a grid with the two objectives of mini-
mizing path length and maximizing clearance and then
showed Pareto optimal solutions to the two-objective
problem in the grid workspace. He also studied the
problem in the continuous space under Manhattan met-
ric, and proposed an O(n3) time algorithm where the
obstacles are n vertical segments. The problem under
Euclidean metric remained as an open problem.

We study the problem of bi-objectives PP in contin-
uous space with the objectives minimizing the length of
the path and maximizing its minimum distance from ob-
stacles. The goal is computing Pareto optimal solutions,
that are, the solutions which cannot be shortened if and
only if their clearance is minimized– Since this problem
is a bi-objective optimization problem in the continu-
ous space, there is an infinite number of Pareto optimal
solutions. So, it is impossible to provide a polynomial
algorithm to compute all the solutions. To smooth this
issue, we focus on different Pareto optimal solutions, the
optimal paths with different middle points –called Dis-
tinct Pareto Optimal paths. We consider a PP search
space with n vertical segments as obstacles and pro-
pose an O(n3) time algorithm to compute all distinct
Pareto optimal solutions where the length of the paths
is evaluated with Euclidean and the clearance is eval-
uated with Manhattan Metric. Then, we show that
the solutions are efficient approximation solutions of the
problem where the both objectives are evaluated under
Euclidean metric.

The next section briefly introduces the bi-objective
problem. Section 3 proposes an exact algorithm for
computing distinct Pareto optimal solutions when the
length and clearance objectives are evaluated under Eu-
clidean and Manhattan metric, respectively. Section 4
extends the results to the case both the objectives are
evaluated under Euclidean distance.

33

3rd Iranian Conference on Computational Geometry

2 Bi-objective Path Planning Problem

Let O = {s1, s2, ..., sn} be a set of left to right sorted
vertical segments as the obstacles, and s and t be the
start and destination points in the plane. Assume,
w.l.o.g., that s and t lie on the left and right side of
the obstacles, respectively. Let the shortest path from
s to t be denote by s-t-path.

For a collision-free path P = {s =
v0, v1, · · · , vm, vm+1 = t} with m breakpoints
v1, v2, · · · , vm, define L(P) as the length of P un-
der Euclidean metric. Also, define C1(P) and C2(P)
as the clearance of P under Manhattan and Euclidean
metrics, respectively, that is minimum distance between
P and the obstacles. We denote the clearance of P
with C(P) in general. The objectives are minimizing
L(P) and maximizing C(P) in the bi-objective path
planning problem.

For two collision-free paths P and P ′, we say that P
dominates P ′ and denote it by P ⪯ P ′, if L(P) < L(P ′)
and C(P) ≥ C(P ′), or if L(P) ≤ L(P ′) and C(P) >
C(P ′). For any pair of paths P and P ′, three cases
may happen, (i) P ⪯ P ′, (ii) P ′ ⪯ P and (iii) none of
them dominates. In the third case we say that P and
P ′ are non-dominated. That means, there is no strict
preference between P and P ′.

Given the definition of dominance, paths such as P
which is not dominated by other collision-free paths,
are called Pareto optimal paths. Any improvement of
P in its length or clearance comes from sacrificing it
in the other objective. Let Π∗ be the set of all Pareto
optimal paths. Pareto-optimal front(s) consists of the
projection of Π∗ in the objective space, That is, the
two- dimensional space with the objective values length
and clearance of each path P ∈ Π∗. For any small
clearance value λ, there is some shortest path in the
workspace [1]. Therefore, the projection of Pareto front
of the problem on C-space is one component, while it is
possible the projection of Pareto front of the problem
on L-space are several components.

Since the workspace of bi-objective path planning is
continuous, Pareto front is infinite set in general. Thus,
there is no algorithm to construct path is Π∗ one-by-
one. Two approaches are proposed to handle this issue
in this paper:

• Finding all different (or Distinct) Pareto optimal
paths, the path with different breakpoints in the
workspace. In other words, the Pareto front is a
set of discrete components. We can compute the
extreme solution of each component.

• Finding a set of finite and polynomial size of solu-
tions which are an approximation set of all Pareto
fronts.

The first approach will result in finding different in-

tervals I1, I2, ..., Ik, for some k, of clearance. We will
compute the lower and upper bound of the intervals and
map it with a set of shortest paths with almost same
breakpoints. We use this approach and solve the prob-
lem of bi-objective path planning for solving the prob-
lem when clearance of the path is measured with Man-
hattan metric. Also, we show these computed paths are
approximate solutions when the case length and clear-
ance of the paths are measured with Euclidean metric.

3 Bi-Objective Path Planning with Euclidean
Length and Manhattan Clearance

Let us explain our approach to solve the bi-objective
path planning algorithm roughly at first. We construct
a shortest path map –called SPM – with clearance λ = 0
by using the idea proposed by Lee and Preparata [6].
The idea is using a sweepline from the start point s to
the destination point t algorithm based on monotonicity
of the shortest. While the sweep-line moves from left to
right, the left side vertices of the segments construct a
tree with the root s and the parent of each vertex p is
the vertex p′ such that p′ is the last breakpoint in the
shortest path between s and p. Also, in each step the
right side of the sweep line is decomposed to a set of re-
gions with the property that the points in a region have
the same parent in the left side of the sweepline. When
the sweepline reaches the destination point t, the short-
est path (with clearance C1(P) = λ = 0) can be easily
computed from s to t by a simple backward manner.
After computing such a general map –called SPM(0)–
we increase value of λ from 0 to ∞ to compute the
Pareto front intervals. To this end, we compute all crit-
ical λ may change the shortest path tree, particularly
the breakpoints of s-t-paths. Since, the obstacles of the
workspace, O = {s1, s2, ..., sn}, are vertical segments,
the following observation is clear.

Observation 1 The shortest path from s to the end-
points of the obstacles (and also to t) is an x−monotone
path.

For finding the shortest path with clearance λ, we
need to expand (or fatten) the obstacles with size λ.
Define O(λ) = {s1(λ), s2(λ), · · · , sn(λ)}, where si(λ) is
the segment si after fattening with size λ under Man-
hattan distance. That is, if ⊕ shows the Minkowski
sum of two objects, si(λ) = si ⊕ Sq(λ), where Sq(λ) is
a square with the diameter size 2λ which is rotated by
an angle of π/4. Indeed, the boundary of Sq(λ) is the
set of all points in the plane whose Manhattan distance
from the center of Sq(λ) is exactly λ.

Observation 2 The breakpoints of any s-t-path with
clearance λ belong to the set O(λ).

34

ICCG 2020, Tehran, February 16, 2020

Figure 1: The SPM map for four obstacles with visibility
edges, SPM-point and bisectors.

Based on Observation 2, our strategy in finding the
Pareto optimal intervals is first computing SPM for
O(λ = 0). Then by increasing λ, we handle the events
may change SPM and the shortest path from s to t. To
this end, we construct a data structure that can handle
the events and create the shortest possible path and re-
port the paths that are distinct. The tree defines the
shortest path on the set O(λ) ∪ {s, t} with root s. We
will explain below important features of the tree [6].

3.1 SPM(0), the Shortest Path Map for O(λ = 0)

SPM(λ =0) is an incremental constructed tree at root
s which is obtained by a sweepline strategy and con-
tains the shortest path from s to any obstacle’s ver-
tices. Suppose SPM(0) is available for the obstacles
s1 = p1q1, · · · , si−1 = pi−1qi−1. Each node pj (or qj),
for j < i has a particular weight(pj) that shows the
length of s-pj-path. The right halfplane of si−1 is de-
composed to a set of regions corresponding with a node
in SPM(0) tree as its parent.

When the sweepline meets obstacle si = piqi, first,
the regions which pi and qi lies are founded, and then
they inserted as new leaves into SPM(0) with the par-
ents corresponding with the regions. Also, their weights
is computed using the weights of their parents. Finally,
the decomposition of the halfplane of si is updated using
bisector of pi and qi and the new visibility edges. The
bisector of pi and qi, denoted by Bpi,qi , is the inter-
section of regions corresponding with pi and qi. That
is, any points p on the right side of si which length
of s-pi-p-path and s-qi-p-path are the same (see Fig.1).
The points of SPM are generally of three types; the in-
tersection points between a pair of bisectors, between
bisectors, and obstacles and between bisectors and the
visibility edges of the obstacles.

Theorem 1 For a set of n vertical segments, the size
of the SPM containing all points and bisectors is linear
and the SPM can be constructed in O(n log n) time [6].

3.2 SPM(λ), the Shortest Path Map for O(λ > 0)

After computing SPM(0), by fatting the obstacles with
size λ, we able to compute and report a Pareto optimal
solution with clearance λ as shown in Fig.1. To find all
Pareto optimal intervals, we need to consider all the dis-
tinct paths that are the endpoints of the fronts. When
an increase in λ changes the path, some breakpoints
may change, in which case an event occurs.

si(λ) = si ⊕ Sq(λ) has six vertices and they can be
easily computed as linear functions respect to parame-
ter λ, e.g., if pi and qi are the top and bottom endpoints
of si, the highest and the lowest vertices of si(λ) can be
shown pi(λ) = ypi+λ and qi(λ) = yqi−λ, where ypi and
yqi denotes the y-coordination of pi and qi, respectively.
Note that, the other four vertices of si local changes in
the map, can be computed without any increasing in the
time or space of the algorithms’ order. We explain the
details of this issue in the Appendix. When λ increases,
it is possible some shortest path change. We call such
values of λ the critical λs that can be obtained by con-
sidering all events may change the structure of the SPM.
Three types of events may occur:

1) A function pi(λ) (or qi(λ)) intersects with Bpi,pk
(λ)

for some i and k.

2) A function pi(λ) (or qi(λ)) intersects with some vis-
ibility edges of the obstacles. When visibility edges
change. There are two types of such edges; The
edge between pipj or qiqj , and the between piqj or
qipj . In the first type of edges the slop remains un-
changed. However, in the second the slop changes
linearly respect to λ.

3) Two obstacles are joined while they are fatting.

To handle the last type, we simply consider the two
joined neighbor obstacles as one obstacle with the top-
most, bottommost and bisector functions they have. It
is possible to handle the differences between their x-
coordinates. The size of such type of events is O(n).
We can compute all critical λs in the beginning and
handle each event in the worst case O(n).
The first type of events occurs when a function pi(λ) (or
qi(λ)) intersects with the bisector Bpj ,pk

(λ) for some j
and k. We need to handle this case if pi(λ) lies on the
corresponding region of one of pi(λ) or qi(λ) , otherwise
no change is needed. So, we update SPM by inserting
an edge (qk, pi) and update the weights of the sub tree
with root qk (See Fig. 2).
The second type of events occurs when a functions pi(λ)
(or qi(λ)) intersects with some O(n2) visibility edges.
So, we update SPM by removing the edge (qj , pk) and
inserting an edge (pi, pk) (See Fig. 3).

Using a heap structure, the mentioned events and
critical λs can be handled efficiently. After each iter-
ation of the above processes, we update the length of

35

3rd Iranian Conference on Computational Geometry

Figure 2: Illustration of the first type of events.

Figure 3: Illustration of the second type of events.

all shortest path from s to the endpoints of the obsta-
cles and update the bisectors one-by-one from left to
right as well as updating the critical λs in the heap to
extract the minimum critical λ.

Let m be the number of breakpoints of s-t-path. So,
using SPM(λ) s-t-path can be reported in O(m) time
for any value of λ. Also, all the s-t-path are represented
with at most O(n2 + R) breakpoints in O(mn2 + nR)
time, where R is the number of insertion and deletions
to the heap structure, which is O(n2) in the worst case.
Since m = O(n), the time complexity of the algorithm
is O(n3).

4 Bi-Objective Path Planning with Euclidean
Length and Clearance

To solve the problem of bi-objective path planning when
the both objectives are evaluated with Euclidean dis-
tance, we need to fat the obstacles using a disk with ra-
dius λ, denoted by D(λ), instead of Sq(λ). However, the
structure of the proposed algorithm remain unchanged
for computing the expanded obstacles, it difficult to up-
date the length of the shortest path. In fact, we need
to present the shortest paths as a function respect to
parameter λ. When D(λ) is used to Minkowski sum,
the shortest path is obtained by tangent lines of some
growing disks which is a high order function based on
λ. So, in the following, we show that the proposed al-
gorithm in the previous section provides approximation
solutions under the following definition when the both
objectives are evaluated under Euclidean distance.

Definition. Let Π be a bi-objective minimization
problem with the objectives f1 and f2. A solution X

is an (α, β)-approximation Pareto optimal solution for
Π, if there is no solution Y such that f1(X) ≥ αf1(Y)
and f2(X) > βf2(Y), or f1(X) > αf1(Y) and f2(X) ≥
βf2(Y).

Theorem 2 . For the problem of bi-objective path plan-
ning under Euclidean metric, there is a (

√
2, 1)- approx-

imation of Pareto optimal solutions.

Proof. The proof is a straightforward result of the
fact that D(λ) can be approximated using the cocen-
tric square Sq(λ). □

5 Conclusion

In this paper, we considered a bi-objective path plan-
ning problem with objectives minimizing the length and
maximizing the clearance– That is maximizing the min-
imum distance between the path and objectives. We
assumed the workspace contains a set of n vertical seg-
ments, and propose an efficient O(n3) time algorithm for
finding Pareto optimal solutions of the problem where
the length and clearance are evaluated by Euclidean and
Manhattan metrics, respectively. Also, we show that
such path are good approximation solutions when the
both objectives are evaluated by Euclidean metric. So,
an open problem remains here is proposing an efficient
algorithm to find the Pareto optimal solutions for this
case of the problem.

References

[1] M. Davoodi, Bi-objective path planning using de-
terministic algorithms. Journal of Robotics and Au-
tonomous Systems, 93:105-115, 2017.

[2] M. Davoodi, F. Panahi, A. Mohades, S. N. Hashemi
Clear and smooth path planning, Applies Soft Com-
puting, 32, pp. 568–579, 2015.

[3] R. Geraerts, Planning short paths with clearance us-
ing explicit corridors, Proc. - IEEE Int. Conf. Robot.
Autom., pp. 19972004, 2010.

[4] S. K. Ghosh and D. M. Mount, An output sensitive al-
gorithm for computing visibility graphs, in 28th Annual
Symp. on Found. of Computer Science, 1987.

[5] J. Hershberger and S. Suri, An Optimal Algorithm for
Euclidean Shortest Paths, 28(6), pp. 2215-2256, 1999.

[6] D. T. Lee and F. P. Preparata, Euclidean shortest paths
in the presence of rectilinear barriers, Networks, 14(3),
pp. 393-410, 1984.

[7] R. Wein, J. P. van den Berg, and D. Halperin, The
Visibility Voronoi Complex and Its Applications, Proc.
twenty-first Annu. Symp. Comput. Geom. - SCG 05,
39250, pp. 63, 2005.

36

ICCG 2020, Tehran, February 16, 2020

On the expected weight of the theta graph on uncertain points

Behnam Iranfar∗ Mohammad Farshi∗ Amir Mesrikhani∗

Abstract

Given a point set S ⊂ Rd, the θ-graph of S is as follows:
for each point s ∈ S, draw cones with apex at s and an-
gle θ and connect s to the point in each cone such that
the projection of the point on the bisector of the cone is
the closest to s. One can define the θ- graph on an un-
certain point set, i.e. a point set where each point si ex-
ists with an independent probability πi ∈ (0, 1]. In this
paper, we propose an algorithm that computes the ex-
pected weight of the θ-graph on a given uncertain point
set. The proposed algorithm takes O(n2α(n2, n)2d) time
and O(n2) space, where n is the number of points, d and
θ are constants, and α is the inverse of the Ackermann’s
function.

1 Introduction

In many applications, such as sensor databases, mobile
object tracking, computer vision or location-based ser-
vices, the existence or location of the data is uncertain,
but we can use statistical information. There are sev-
eral models for uncertain data. Some of them assign an
area to each point which represents the area that the
point resides, but the exact position of the point in its
corresponding area is unknown. In the tuple model of
uncertain data, each input point has a fixed location
but it only exists probabilistically. The input is a pair
(S, Π) such that S = {s1, s2, . . . , sn} is a set of n points
(sites) in Rd, and Π = {π1, π2, . . . , πn} is a probability
vector with the interpretation of that sites.

The geometric structures on uncertain data are also
interesting because they have wide application in solv-
ing problems. For example, some geometric graphs have
application in protein visualization, wireless network-
ing, motion planning, and real-time animation [8, 10,
12, 19]. The properties on a geometric graph influence
the time and space complexity of the problem that uses
the structure. For example, if one wants to construct
a network on a set of points, then the total cost of the
network, i.e. the sum of all edge weights of the graph, is
an important parameter. For uncertain data, the prop-
erties of the structures on the data are not determinis-
tic, but one can compute the expected properties of the

∗Combinatorial and Geometric Algorithms Lab.,
Department of Mathematics Science, Yazd Univer-
sity, biranfar@stu.yazd.ac.ir, mfarshi@yazd.ac.ir,
mesrikhani@stu.yazd.ac.ir

structures on uncertain data, see for example [13, 17].
In this paper, we study the problem of computing the

expected weight of a well-known geometric graph known
as the θ-graph [10, 14, 15]. For building the θ-graph for
S ⊂ Rd, divide the space around each point p ∈ S into
a set of cones C of maximum angle θ, and then for each
cone c ∈ C, connect p to a point q ∈ S that lies in cone
c and minimizes the Euclidean distance between p and
the projection of q into the bisector lc of c. For details
see [18, Chapter 4].

1.1 Related work.

Uncertainty has been studied in some articles in com-
putational geometry. In 2013, Suri et al. [20] have
studied the most likely convex hull under the uncer-
tain points and showed that the most likely convex
hull under the point model (tuple model) can be com-
puted in O(n3) time in d = 2 dimension, but it is NP-
hard for d ≥ 3. Agarwal et al. [4], in 2014, have
studied the problem of computing probability of query
point lying inside the convex hull, and their results have
included both approximation and exact algorithm for
given uncertain points. In 2015, Zhang [22] have for-
mulated two different nearest neighbors on uncertain
points: the expected nearest neighbor, where the ex-
pected distance between each input point and a query
point has been considered, and the probabilistic nearest
neighbor. There also has several papers that consider
range searching, indexing, the uncertain data and com-
munity direction [1, 2, 3, 5, 6, 7, 11].

2 The expected weight of the θ-graph

In this section, we will describe an algorithm for com-
puting the expected weight of the θ-graph (EWTG) of n
points in Rd under uncertainty. The algorithm is similar
to the algorithm of building the (deterministic) θ-graph.

Let (S, Π) denote the uncertain points in d-
dimensional space. For computing EWTG, we must
calculate probability of existing each edge and multi-
ply it to its length. In other words,

EWTG(S) =
∑

si,sj∈S, i<j

|sisj |×πi,j , (1)

where πi,j , for all si, sj ∈ S, is the probability of having
the edge (si, sj) in the θ-graph.

37

3rd Iranian Conference on Computational Geometry

Consider two points si, sj ∈ S, i ̸= j in Rd. Let c be
the cone with apex si that include sj . We add a half
plane to c, where this half plane determine by sj and
orthogonal vector (−1) × lc, we denote this region by
Ri,j (see Figure 1(a)).

si sj
lc

Ri,j

(a)

si
sj

Rj,i

Ri,j

Ri,j ∩Rj,i

(b)

Figure 1: Illustration of Ri,j and Ri,j ∩Rj,i in the plane.

Observation 1 The edge between two points si and sj

exists if and only if

1. si and sj exist.

2. There is no point in Ri,j or Rj,i (see Figure 1(b)).

More formally,

πi,j = πi × πj × (A + B − C) , (2)
where πm = (1 − πm), A =

∏
sm∈Ri,j

πm, B =∏
sm∈Rj,i

πm and C =
∏

sm∈Ri,j∩Rj.i
πm. Note that the

last sentence subtracted because the points in Ri,j ∩Rj,i

considered twice in the previous terms of the equation.
By Equations (1) and (2), we have

EWTG(S) =
∑

si, sj ∈ S,

i < j

(|sisj |×πi × πj × (A + B − C)) .

(3)
First, we describe an algorithm for computing

∑

si,sj∈S, i<j

[|sisj |×πi × πj × [A + B]] . (4)

For each cone c ∈ Cκ, points are sorted based on the
orthogonal projection onto lc. Obviously, for each two
points si, sj ∈ S, if i ≥ j, then Ri,j is empty, so we
only need to compute Ri,j , for i < j. Consider a cone
ci ∈ Cκ. Let ci,sj

be the cone ci transfered to a point
sj ∈ S.

Lemma 1 Algorithm 1 computes the first part of Equa-
tion (3) in O(κn2) time and O(n) space.

Now, we describe an algorithm for computing the last
part of Equation (3), i.e.

∑

si,sj∈S, i<j

[|sisj |×πi × πj × C] . (5)

Algorithm 1:
Input : Uncertain point set (S, Π)

Output:
∑

si, sj ∈ S,

i < j

[|sisj |×πi × πj × [A + B]]

1 Sum = 0;
2 for any cones ci, 1 ≤ i ≤ κ do
3 Project all points to lci ;
4 Sort the points based on its position on lci ;
5 for j = 1 to n − 1 do
6 µ = πj ;
7 for k = j + 1 to n do
8 if sk ∈ csj then
9 Sum = Sum + µ × πk × |sjsk|;

10 µ = µ × πk;

11 return Sum;

Partial sum query: Given a d-dimensional array A
with n entries from a semigroup, a partial sum query
problem is the problem of given a d-dimensional query
rectangle γ = [a1, b1] × · · · × [ad, bd], it computes

σ(A, γ) =
∑

(x1,x2,...,xd)∈γ

A[x1, x2, . . . , xd].

The partial-sum query problem is a special case of the
classic orthogonal range searching problem.

To convert computing
∏

sm∈Ri,j∩Rj,i
πm to a partial-

sum query problem, we do the following:

1. Any region Ri,j ∩ Rj,i is converted to a d-
dimensional rectangle.

2. The formula
∏

sm∈Ri,j∩Rj,i
πm converts to an oper-

ator in a semigroup.

Each cone of Cκ have f = 2d−1 faces. Let dj
i be the

line passing through the origin that is orthogonal to the
j-th face of the cone ci. We define D = {dj

i : for 1 ≤
i ≤ κ and 1 ≤ j ≤ f}. These lines define a coordinate
system that can be used to compute

∏
sm∈Ri,j∩Rj,i

πm.
For converting each region Ri,j ∩Rj,i, for 1 ≤ i, j ≤ n

and i ̸= j, to a rectangle, we only need to project all
of point in S onto lines in D. New coordinates have at
most

f × κ = 2d−1 × 2dmd−1 = O(2dd(d+1)/2(π/θ)d−1)

dimensions.
We assign the value πi to A[si], for all si ∈ S. This

partial-sum query can be answered by choosing the
semigroup to be (R, ×), where × denotes the standard
real number multiplication.

38

ICCG 2020, Tehran, February 16, 2020

Algorithm 2:
Input : Uncertain point set (S, Π)

Output:
∑

si, sj ∈ S,

i < j

[|sisj |×πi × πj × C]

1 Sum = 0;
2 for i = 1 to n do
3 Transform point si to the new coordinate system;
4 for i = 1 to n − 1 do
5 for j = i + 1 to n do
6 σ(A, γ) = the partial-sum for γ = Ri,j ∩ Rj,i;
7 Sum = Sum + |sisj |×πi × πj × σ(A, γ) ;

8 return Sum;

Theorem 2 [9] Given a semigroup of n variables in Rd

and k ≥ 14d, there is a scheme that computes any d-
dimensional rectangle query in O(α(kn, n)d) time. Pre-
processing this scheme is used to k cells per variable and
can be constructed in time proportional to its size.

The function α(., .) is the inverse of Ackermann’s func-
tion defined by Tarjan [21].

Lemma 3 Algorithm 2 computes Equation (5) in
O(n2α(n2, n)2

dd(d+1)/2(π/θ)d−1

) time and O(n2) space.

Theorem 4 Let S be a set of n uncertain points in
Rd. The expected weight of the θ-graph on S can be
computed in O(n2α(n2, n)2

dd(d+1)/2(π/θ)d−1

) time using
O(n2) space.

3 Improve the running time of the algorithm

In Section 2, for building set C of cones, we consider a
hypercube H = [−1, 1]d with 2d faces. The each face of
H is partitioned to (d−1)-dimensional hypercubes with

side length 2
m , where m is

⌈√
2(d−1)
1−cos θ

⌉
. Each partition is

called a subhypercube. These cones are not simplicial
because of subhypercubes were having 2d − 1 vertices
define them.

In this section, we want to decrease the number of
dimensional partial-sum query and improve the running
time complexity of Algorithm 2. First, we partition the
cones to simplex-cones such that each cone has d faces.
Then, we put the each region generated by the simplex-
cones to a group represented by a simplex-cone.

For example, if we partition the cone csi that contains
point sj to two cones, then the region Ri,j is partitioned
to two region R1

i,j and R2
i,j .

Simply, it is observed that

Ri,j ∩ Rj,i = (R1
i,j ∩ R1

j,i) ∪ (R1
i,j ∩ R2

j,i)

∪ (R2
i,j ∩ R1

j,i) ∪ (R2
i,j ∩ R2

j,i)

and thus

∏

sm∈Ri,j∩Rj,i

πm =


 ∏

sm∈R1
i,j∩R1

j,i

πm


 ×


 ∏

sm∈R1
i,j∩R2

j,i

πm


 ×


 ∏

sm∈R2
i,j∩R1

j,i

πm


 ×


 ∏

sm∈R2
i,j∩R2

j,i

πm


 .

Generally, a d-dimensional hypercube can be triangu-
lation into d! d-simplices with disjoint interiors [16].

Let V = {v0, v1, . . . , vβ}, 0 ≤ β ≤ d, be a set of β + 1
points in Rd. If the vectors vi − v0, 1 ≤ i ≤ β, are
linearly independent, then the convex hull of V is called
a β-simplex.

Consider the collection Cκ = {c1, c2, . . . , ck} of cones
in Section 2. Each cone ci in Cκ generated by Vi, where
Vi is the vertex set of a (d − 1)-dimensional hypercube
that is contained in one of the 2d hypercube x1 = 1,
x1 = −1, x2 = 1, x2 = −1, …, xd = 1, xd = −1. This
hypercube can be triangulated into (d−1)! many (d−1)-
simplices ∆1

i , ∆
2
i , . . . , ∆

(d−1)!
i , that are all contained in

the same hyperplane as Vi. We define

Cκs
= {cj

i : for 1 ≤ i ≤ κ, 1 ≤ j ≤ (d − 1)! },

where κs = 2d! ⌈
√

2(d − 1)/(1 − cos θ)⌉d−1. Since κ =
d(d+1)/2(π/θ)d−1, we have

κs ≤ κdd−1 = d(3d−1)/2(π/θ)d−1.

The collection Cκs consist κs simplicial cones that cover
Rd, and that all have their apex at the origin. If d is
a constant, then Cκ can be constructed in O(1/θd−1)
time and consists of κ = O(1/θd−1) cones with disjoint
interiors [18].

Since the collection Cκs
has at most d(3d−1)/2(π/θ)d−1

cones, if we only consider the collection of the vec-
tor perpendicular to every face, then we have at most
(d(3d−1)/2(π/θ)d−1)2 different group regions Rk

i,j ∩ Rl
j,i,

for all si, sj ∈ S, i < j and 1 ≤ k, l ≤ (d − 1)!.

Observation 2 Let si and sj be two points in S. We
have

∏

sm∈Ri.j∩Rj,i

πm =

(d−1)!∏

k=1




(d−1)!∏

l=1

∏

sm∈Rk
i.j∩Rl

j,i

πm


 .

Similar to Section 2, we will convert
∏

sm∈Rk
i,j∩Rl

j,i
πm

to a partial-sum query. First, all regions Rk
i,j ∩ Rl

j,i, for
all si, sj ∈ S , i < j and 1 ≤ k, l ≤ (d − 1)!, are grouped
base of lines through the origin that are orthogonal to

39

3rd Iranian Conference on Computational Geometry

its face, we denote the i-th group of regions by Gi and
the number of groups by q. Next, for each region, let
D1, D2, . . . , Df be the lines through the origin that are
orthogonal to the face of this region, where f is equal to
2d. These lines define the coordinate system that can
be used to compute

∏
sm∈Ri,j∩Rj,i

πm.
We define the function Source() such that

Source(Rk
i,j ∩ Rl

j,i) = Ri,j ∩ Rj,i,

for any 1 ≤ i < j ≤ n and 1 ≤ k, l ≤ (d − 1)!. We pre-
process every group for computing partial-sum query.

Lemma 5 One can compute Equation (5) in
O(n2α(n2, n)2d) time and O(n2) space.

From Lemma 1 and Lemma 5, the following theorem
is obtained.

Theorem 6 Let S be a set of n uncertain points in Rd.
The expected weight of the θ-graph can be computed in
O(n2α(n2, n)2

d

) time and O(n2) space.

4 Conclusion

In this paper, we studied the θ-graph of a set of n points
in uncertain points in tuple model. We proposed an
algorithm to compute the expected weight of θ-graph in
O(n2α(n2, n)2d) time using O(n2) space, where θ and
d are constants. There are some interesting problems
to be pursued. One of them is computing the expected
weight of other spanners on uncertain points, since the
θ-graph is a t-spanner for a t which is a function of θ.

References

[1] P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and
J. M. Phillips. (approximate) uncertain skylines. The-
ory of Computing Systems, 52(3):342–366, 2013.

[2] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Index-
ing uncertain data. In Proceedings of the twenty-eighth
ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, pages 137–146. ACM, 2009.

[3] P. K. Agarwal, S.-W. Cheng, and K. Yi. Range search-
ing on uncertain data. ACM Transactions on Algo-
rithms (TALG), 8(4):43, 2012.

[4] P. K. Agarwal, S. Har-Peled, S. Suri, H. Yıldız, and
W. Zhang. Convex hulls under uncertainty. In European
Symposium on Algorithms, pages 37–48. Springer, 2014.

[5] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. Range-
max queries on uncertain data. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 465–476. ACM,
2016.

[6] C. C. Aggarwal. Managing and Mining Uncertain Data.
Springer Publishing Company, Incorporated, 2009.

[7] C. C. Aggarwal and S. Y. Philip. A survey of uncer-
tain data algorithms and applications. IEEE Transac-
tions on Knowledge and Data Engineering, 21(5):609–
623, 2009.

[8] K. M. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and
O. Frieder. Geometric spanners for wireless ad hoc net-
works. IEEE Transactions on Parallel and Distributed
Systems, 14(4):408–421, 2003.

[9] B. Chazelle and B. Rosenberg. Computing partial sums
in multidimensional arrays. In Proceedings of the fifth
annual symposium on Computational geometry, pages
131–139. ACM, 1989.

[10] K. L. Clarkson. Approximation algorithms for shortest
path motion planning. In STOC’87: Proceedings of the
19th Annual ACM Symposium on Theory of Computing,
pages 56–65, 1987.

[11] G. Cormode and A. McGregor. Approximation algo-
rithms for clustering uncertain data. In Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
191–200. ACM, 2008.

[12] M. Fischer, T. Lukovszki, and M. Ziegler. Geometric
searching in walkthrough animations with weak span-
ners in real time. In Algorithms — ESA’ 98, pages
163–174. Springer, 1998.

[13] O. Goldreich and D. Ron. Approximating average pa-
rameters of graphs. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Tech-
niques, pages 363–374. Springer, 2006.

[14] J. M. Keil. Approximating the complete Euclidean
graph. In SWAT’88: Proceedings of the 1st Scandi-
navian Workshop on Algorithm Theory, volume 318
of Lecture Notes in Computer Science, pages 208–213.
Springer-Verlag, 1988.

[15] J. M. Keil and C. A. Gutwin. Classes of graphs which
approximate the complete Euclidean graph. Discrete
and Computational Geometry, 7:13–28, 1992.

[16] H. W. Kuhn. Some combinatorial lemmas in topology.
IBM Journal of research and development, 4(5):518–
524, 1960.

[17] P. Morin and S. Verdonschot. On the average number
of edges in theta graphs. In Proceedings of the Meeting
on Analytic Algorithmics and Combinatorics, page 121–
132, USA, 2014.

[18] G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

[19] D. Russel and L. J. Guibas. Exploring protein folding
trajectories using geometric spanners. Pacific Sympo-
sium on Biocomputing, pages 40–51, 2005.

[20] S. Suri, K. Verbeek, and H. Yıldız. On the most likely
convex hull of uncertain points. In European Symposium
on Algorithms, pages 791–802. Springer, 2013.

[21] R. E. Tarjan. Efficiency of a good but not linear
set union algorithm. Journal of the ACM (JACM),
22(2):215–225, 1975.

[22] W. Zhang. Geometric computing over uncertain data.
PhD thesis, Duke University, 2015.

40

ICCG 2020, Tehran, February 16, 2020

Surrounded k-Center and Applications in MapReduce

Sepideh Aghamolaei∗ Mohammad Ghodsi†

Abstract

We are given a set of points P and a boundary B in the
Euclidean plane. The goal of the surrounded k-center
problem is to find a subset of k input points as cen-
ters C such that the maximum distance from an input
point (in P) to its nearest center or its nearest boundary
point/segment (in C or B) is minimized.

By a simple reduction from k-center, this problem is
NP-hard and there is a lower bound 1.822 on its ap-
proximation factor. We give several 2-approximation
algorithms for this problem. Based on surrounded k-
center, we define the persistent clustering as a version of
k-center, where points have timestamps and each point
can be assigned to centers with smaller or equal times-
tamps. For this problem, we give a 2-approximation se-
quential algorithm and a 4-approximation MapReduce
algorithm.

1 Introduction

k-center is a classic computational geometry problem.
The goal of metric k-center is to choose a subset of size
k called C from a set of input points P such that the
maximum distance from each point to its nearest cen-
ter is minimized. Metric k-center is NP-hard and it has
tight 2-approximation algorithms [13]. The lower bound
on the approximation factor of Euclidean k-center is
1.822 [6]. A variation of k-center is k-line center, where
the goal is to find k lines (or cylinders in higher dimen-
sions) as centers such that the distance from each point
to its nearest line is minimized [1].
MapReduce is a distributed and parallel framework

for data processing. In MapReduce, data is distributed
among a set of machines. Each machine processes its
data independently during each parallel round, and the
machines communicate after each round. Among fa-
mous theoretical MapReduce models are MRC [10] and
MPC [3]. MRC limits the memory of each machine
m and the number of machines L to be sublinear in
the input size n and has a poly-logarithmic number of
rounds. MPC adds the following restrictions to MRC:
mL = O(n) and the round complexity must be O(1).
Semi-group operations take O(logm n) MPC rounds [8].

∗Department of Computer Engineering, Sharif University of
Technology, aghamolaei@ce.sharif.edu
†Department of Computer Engineering, Sharif University of

Technology, ghodsi@sharif.edu

Metric k-center can be 4-approximated in O(1)
rounds in MPC [11]. Euclidean k-center has (2 + ε)-
approximation algorithms with O(1) rounds in MPC [4,
2]. In [9], the radius of remote-edge diversity with
(k + 1) vertices is also the radius of metric k-center,
so the 3-approximation algorithm works for both prob-
lems. However, the algorithm is existential and does not
give the set of k centers corresponding to that radius.

Problem Definition

We define two new variations of k-center.
Given a set of points P and a boundary B, the sur-

rounded k-center problem aims to find a subset C of
k points (centers) from P , such that the distance from
each point of P to its nearest center in C or to the
boundary B is minimized. We assume B is a set of |B|
curves of constant complexity, and the distance from a
point to each curve of the boundary can be computed in
O(1) time. An example of 2-center is shown in Figure 1.

rc1

c2

B

r

Figure 1: An example of surrounded 2-center. The
shaded region is the area covered by the centers C =
{c1, c2} and the boundary B, with radius r.

Given a time-stamped point set P, T : P → N, per-
sistent k-center finds k centers C ⊂ P such that the
maximum distance from each point of P to its near-
est center in C with a smaller or equal time-stamp is
minimized. Formally, the objective function is:

min
C⊂P,
|C|=k

max
p∈P

min
c∈C,

T (c)≤T (p)

d(p, c).

Existing algorithms for timestamped data do not guar-
antee persistency. Incremental clustering [5] allows the
existing points to be assigned to new centers, and is
therefore different. Also, incremental clustering uses
competitive ratio instead of approximation factor. Re-
computing the solution after a set of points has been

41

3rd Iranian Conference on Computational Geometry

added might lead to a new center for an existing point,
which contradicts the persistency of the clustering.

Contributions

We design a set of algorithms for surrounded k-center.
The time complexities and the approximation factors of
these algorithms are summarized in Table 1.

Approx. Time Reference

≥ 2 O(poly(n)) Theorem 1
2 O(n2 log n) Algorithm 1
2 O(n2) Algorithm 2
2† O(nk log n)∗ Theorem 6

2 + ε O(n
2

ε) Algorithms 1 and 2
using [2]

Table 1: Algorithms for surrounded k-center. Here, n
denotes the input size. The time complexity marked
with a ∗ is reported assuming k = o(

√
n), |P | = O(n),

and |B| = O(n). The algorithm marked with † only
works for polygonal boundaries.

Also, for the case where there are constraints for as-
signing a point to a center or the boundary, we prove our
parametric pruning algorithm (Algorithm 1) still works.

We give a 2-approximation for persistent clustering
and extend it to MPC, where we get a 4-approximation
in O(1) rounds.

2 Hardness

The surrounded k-center problem can be seen as an in-
stance of the k-center problem where the distance func-
tion is the minimum of the distance from each input
point to its nearest boundary point and the distance to
its nearest center. We define this new distance function
d′ for any pair of points x and y as follows:

d′(x, y) = min(d(x, y), d(x,B)),

where d is the Euclidean distance and B denotes the
boundary.

When d(x,B) 6= d(y,B), the distance function d′ is
non-symmetric. Therefore, the proof of metric k-center
(including Euclidean k-center) no longer applies to this
case and we need to prove the approximation factor.

Reduction from k-Center

Here, we give an approximation factor preserving reduc-
tion from k-center to surrounded k-center.

An instance of k-center can be converted into an in-
stance of the surrounded k-center by computing the
minimum enclosing ball of the points and multiplying its
radius by 4. If the boundary is restricted to be polyg-
onal, the bounding box of this ball can be used. By

definition, any solution of the k-center problem is also
a solution of the surrounded k-center problem.

The distance between any pair of points inside the
minimum enclosing ball is at most 2R and the distance
between each boundary point to an input point is at
least 3R. Therefore, no point is assigned to the bound-
ary in the optimal solution of the surrounded k-center,
which means its solution is a valid solution of k-center
and an optimal solution because it has the minimum
cost among all solutions.

This reduction and the previous results on Euclidean
k-center [6] give us the following corollary:

Corollary 1 Surrounded k-center is NP-hard, and the
lower bound on its approximation factor is 1.822.

3 Approximate Surrounded k-Center

3.1 A Parametric Pruning Algorithm

In this section, we propose an approximation algorithm
based on the parametric pruning for k-center [13].

Algorithm 1 Surrounded k-Center

Input: A point set P , a boundary B, an integer k
Output: A set of at most k centers
1: D = {d(p,B)|∀p ∈ P}
2: D = D ∪ {d(p, q)|p, q ∈ P}
3: Sort D in ascending order
4: for r ∈ D do
5: Pr = P \ {p|d(p,B) ≤ 2r}
6: Er = {(p, q)|d(p, q) ≤ 2r, p, q ∈ Pr}
7: Build the graph Gr = (Pr, Er)
8: Ir = a maximal independent set of Gr
9: if |Ir| ≤ k then

10: return Ir

Theorem 2 Algorithm 1 has approximation factor 2
for surrounded k-center.

Proof. The optimal cost is the distance between a
point of P to its closest point from B or P . Remov-
ing the points near the boundary adds a factor 2 to the
optimal radius. Ir has size at most as much as the dom-
inating set of the graph with edges of length at most r
on P , since all the points inside a cluster centered at a
vertex of the dominating set have distance at most 2r
from each other. �

Theorem 3 The time complexity of Algorithm 1 is
O(n2 log n), assuming |P |+ |B| = n.

Proof. Computing the distances between all the points
and the boundary takes |P | times the time required for
computing the distance from a point to the boundary
(O(|B|). So, it takes O(|P ||B|) = O(n2) time.

42

ICCG 2020, Tehran, February 16, 2020

Sorting Θ(n2) distances takes O(n2 log n) time.
Building Gr by pruning away the edges of the complete
graph on P with length more than 2r takes O(n2) time.
Computing a maximal independent set using a greedy
algorithm takes linear time in the number of vertices,
so, it takes O(n2) time. The overall time complexity of
the algorithm is, therefore, O(n2 log n). �

3.2 A Greedy Algorithm

We start by finding the point with maximum distance
from its nearest boundary point, inside the boundary.
Then, at each step, we add the farthest point to the pre-
viously chosen points and the boundary, until we have
k centers. The algorithm in this section is based on the
algorithm of [7] for k-center.

Algorithm 2 Surrounded k-Center (Greedy)

Input: A point set P , a boundary B, an integer k
Output: A set of at most k centers
1: c1 = arg maxp∈P minb∈B d(b, p)
2: for i = 2, · · · , k do
3: find the farthest point in P to {cj}i−1j=1 and B

4: return {cj}kj=1

Theorem 4 The time complexity of Algorithm 2 is
O(kn2), where n = |P |+ |B|.
Proof. In Line 1, for each of the input points, we com-
pute their distance to every other point and boundary
edge. This takes O(|P ||B|) time. Finding the point with
maximum distance to the previously chosen centers and
the boundary takes O(|P |(|B|+ k)) time. So, the over-
all time complexity is O(|P |k(|B|+ k)) = O(k|P ||B|) =
O(kn2). �

Theorem 5 Algorithm 2 gives a 2-approximation for
surrounded k-center.

Proof. The greedy algorithm like the parametric prun-
ing algorithm (Algorithm 1) computes an independent
set, except that it chooses the centers from the points
with maximum distance the previously chosen points
and the boundary. Since any independent set will find
the solution, so does the one computed by this greedy
strategy. �

3.3 The Case of Polygonal Boundaries

For polygonal boundaries, using the segments Voronoi
diagram [12] of the boundary segments, we can find the
nearest segment to each point in O(log n) time.

Theorem 6 The time complexity of Algorithm 2 using
a points Voronoi diagram on centers and a segments
Voronoi diagram on the boundary is O(nk log |B| +
k2 log k + |P | log k).

Proof. Constructing a segments Voronoi diagram takes
O(|B| log |B|) time. Querying the segments Voronoi di-
agram for each point for choosing each center takes
O(k|P | log(|B|) time. Finding the nearest center to each
point takes O(log k) time, using a points Voronoi dia-
gram which requires O(k log k) time. Since we build
a new Voronoi diagram after adding each center, the
overall time complexity of building points Voronoi dia-
grams is O(k2 log k). Using this Voronoi diagram takes
O(|P | log k) time. The sum of these time complexities
gives the bound in the theorem’s statement. �

3.4 Constrained Surrounded k-Center

The constrained version of the surrounded k-center puts
restrictions on the assignment of a point to a center
or the boundary. We assume a graph defining these
constraints is given as a part of the input.

In Figure 2, we have visibility constraints, i.e. there
must be a direct line of sight between a center or a point
of the boundary and the point that it is covering.

Figure 2: Surrounded k-center with constraints.

Algorithm 1 can be modified to solve this problem by
only considering the valid edges.

4 Persistent Clustering

We give an algorithm for persistent k-center (Algo-
rithm 3) based on the parametric pruning for k-
center [13], and compute the ratio between the cost of
persistent k-center and k-center.

Algorithm 3 updates the set of centers, assuming a
new batch of points P is given, the previous radius was
r0 and the previous set of centers was C. Reducing the
number of centers is done by computing a persistent
k-center of centers (C). Since there are more than k
centers, r0 is less than the optimal radius, so the ap-
proximation factor still holds.

Theorem 7 Algorithm 3 is a 2-approximation.

Proof. Since D contains all the pairwise distances,
then the optimal radius is a subset of D.

Consider an optimal cluster. If the center of this clus-
ter is in C, then we assign the points of the cluster either
in Line 4 or Line 7. If it is assigned to a cluster, then
the distance from this point to its nearest center is at
most r. Since we use 2r in Line 8, the resulting cluster
covers all the points of that optimal cluster. �

43

3rd Iranian Conference on Computational Geometry

Algorithm 3 Persistent k-Center (Adding Centers)

Input: A point set P , a set of centers C, an integer k,
a constant r0

Output: A set of at most k centers
1: B = the set of disks of radii r0 centered at C
2: D = {d(p,B)|∀p ∈ P}
3: D = D ∪ {d(p, q)|p, q ∈ P}
4: Remove any point of P with distance ≤ r0 from C
5: Sort D in ascending order
6: for r ∈ D do
7: Pr = P \ {p|d(p,B) ≤ 2(r − r0)}
8: Er = {(p, q)|d(p, q) ≤ 2r, p, q ∈ Pr}
9: Define the graph Gr = (Pr, Er)

10: Ir = a maximal independent set of Gr
11: if |Ir| ≤ k then
12: return Ir

Theorem 8 Algorithm 3 takes O(n3) time.

Proof. Set D has size O(n2), so sorting D takes
O(n2 log n) time. Computing a maximal independent
set of size k, takes O(n) time. Since this computation
is repeated D times, the overall time complexity of the
algorithm is O(n3). �

4.1 Persistent Euclidean k-Center in MapReduce

Here, we give a O(1) round algorithm for this problem.

Algorithm 4 Persistent k-Center

Input: A point set P , a set of centers C, an integer k,
a constant r0

Output: A set of at most k centers
1: send C and r0 to all machines
2: compute a persistent k-center in each machine (us-

ing Algorithm 3)
3: send the centers from each machine to the first ma-

chine
4: compute a persistent k-center in the first machine
5: return the centers from the previous step

Theorem 9 Algorithm 4 computes a 4-approximation
persistent k-center in MPC.

Proof. Assume c is the center covering a point p, and
t is the center chosen in its local machine. Then, using
triangle inequality: d(p, c) ≤ d(p, t)+d(t, c) ≤ 2r+2r =
4r. For any point assigned to the boundary, its distance
is at most 2r, based on Theorem 7. �

Theorem 10 Algorithm 4 takes O(logm n) rounds.

Proof. Sending data of size |C| to all machines takes
O(logm |C|) rounds, using semi-group operations. Com-
puting a solution in each machine takes 1 round. Send-
ing the solutions to the first machine takes O(logm(kL))

rounds, since the union of the solutions must be com-
puted. Computing the solution in the first machine
takes 1 round. �

References

[1] P. K. Agarwal, C. M. Procopiuc, and K. R. Varadara-
jan. Approximation algorithms for k-line center. In
Annu. European Sympos. Algorithms, pages 54–63.
Springer, 2002.

[2] S. Aghamolaei and M. Ghodsi. A composable core-
set for k-center in doubling metrics. arXiv preprint
arXiv:1902.01896, 2019.

[3] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In Proceedings of the
32nd ACM SIGMOD-SIGACT-SIGAI Sympos. Princ.
Database Syst., pages 273–284. ACM, 2013.

[4] M. Ceccarello, A. Pietracaprina, and G. Pucci. Solv-
ing k-center clustering (with outliers) in mapreduce and
streaming, almost as accurately as sequentially. Pro-
ceedings of the VLDB Endowment, 12(7):766–778, 2019.

[5] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. In-
cremental clustering and dynamic information retrieval.
SIAM J. Comput., 33(6):1417–1440, 2004.

[6] T. Feder and D. Greene. Optimal algorithms for ap-
proximate clustering. In Proceedings of the 20th Annu.
ACM Sympos. Theory Comput., pages 434–444. ACM,
1988.

[7] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoret. Comput. Sci., 38:293–
306, 1985.

[8] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the mapreduce framework.
In Annu. Internat. Sympos. Algorithms Comput., pages
374–383. Springer, 2011.

[9] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mir-
rokni. Composable core-sets for diversity and cover-
age maximization. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGAI Sympos. Princ. Database
Syst., pages 100–108. ACM, 2014.

[10] H. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In Proceedings of the 21st
ACM-SIAM Sympos. Discrete Algorithms, pages 938–
948. SIAM, 2010.

[11] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Wein-
berger, and B. Moseley. Fast distributed k-center clus-
tering with outliers on massive data. In Advances in
Neural Information Processing Systems, pages 1063–
1071, 2015.

[12] C. D. Toth, J. O’Rourke, and J. E. Goodman. Handbook
of discrete and computational geometry. Chapman and
Hall/CRC, 2017.

[13] V. V. Vazirani. Approximation algorithms. Springer
Science & Business Media, 2013.

44

	preamble
	proc
	Conference Program
	Sunday February 16
	Invited talk
	Drawing Graphs and Hypergraphs in 2D and 3D

	Session 1
	Angle-Monotonicity of Delaunay Triangulation
	Never Absent for Long and Never Far Away
	Competitive Strategies for Walking in Streets for a Simple Robot Using Local Information

	Session 2
	On Connecting with Neighborhoods: Complexity and Algorithms
	Planar Euclidean TSP via Snowflake Tree
	Frechet Distance Queries in Trajectory Data

	Session 3
	Path Planning with Objectives Minimizing Length and Maximizing Clearance
	On the expected weight of the theta graph on uncertain points
	Surrounded k-Center and Applications in MapReduce

