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What is graph drawing?

- abstract (combinatorial) - drawing
graph (e.g. node-link diagram)

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

Evaluation is not task-driven
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Drawing Styles

m straight-line vs. curved

m straight-line vs. polyline
m restricted slopes

m restricted to grid points
m directed drawings

m monotone drawings, confluent drawings, partial edge drawing, radial
drawings, thick drawings, Lombardi drawings, ....
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Classical Measures

- __maximal distance between two vertices
m vertex FESO|UtIOn " minimal distance between two vertices

goal: small vertex resolution

m angular resolution = size of the smallest angle

goal: large vertex resolution
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More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

m number of edge crossings
m and many more .....

Improving on one measure often decreases another measure!
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Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

m trees (connected, no cycles)
m planar graphs (can be drawn without crossings)

m triangulations (maximal planar)

m planar 3-trees
m outerplanar graphs
m serial-parallel graphs

m k-connected
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Prominent graph classes by example

4-connected

planar graphs

NZ8

planar 3-trees

partial series-parallel graphs

outerplanar graphs

P~

Trees




Standard techniques |



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees: /\

AN




Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees: /\




Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
Tg T o—————
1




Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
1y T (
Wy 1,
Wy

” w = max{w; + 1, w,}



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
Ao &
T ——
“wy T,
Tw,
w
Win) <W(n/2)+1
W(n) = O(logn)

w.log. |Ty| <|T)]

w = max{w; + 1, w,}



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
Ty T (
wy 1,
Wy
” w = max{w; + 1, w,}

Win) <W(n/2)+1
W(n) = O(logn)

No row without vertex: H(n) = O(n)



Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
/\V ‘ T, w.l.o.g. [Ty| < |T}]|

) il L —
wy 1,
Wy
” w = max{w; + 1, w,}

Wi(n)<W(n/2)+1
W(n) = O(logn)

No row without vertex: H(n) = O(n)
Area O(nlogn) for the upward grid drawing.

[Crescenzi, Di Battista, Piperno '92]
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m If your graph class has an inductive construction,
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Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

3-tree before last addition

< 2(n —1) — 4 segments <2(n—1)—4+2=2n — 4 segments

3-connected planar graphs have an inductive construction sequence:
canonical ordering © boost C++ lib
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More ideas

The approach that works best in practice is the
spring embedder.

Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract
Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)
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More ideas

The approach that works best in practice is the
spring embedder.

Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract
Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)
c1 lpi —pj
Fij = (pj — pi) Fi'20210g< (Pi — pj)
lpi —pylI*/2 ™ ! c3 !
k? lpi — pj
Fij = (pj — i) Fij = =———=(pi = ;)

lpi — pj
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Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3
[Brass et al. '07] 4 \
0 — |
T = (v2,v1, Vs, V3, Vs, V4) g:: °<
Ty — (?}1,’05,?]2,?)6,’04,?}3) 1o o‘,'
Six Matchings: NO rrrrorro -

[Cabello et al. '07]

[T ITX X1 2% X 2K

In a K3 3-drawing at least two edges cross. For every pair of edges one
matching contains these.
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Morphing
Given: Drawings of planar graphs Gy, = (V, E1) and G2 = (V, E5).

Question: Can we continuously deform G; to GG without introducing
crossings’?

Solution:

m Compute (asymmetric) spring weights for the drawings of

G1/Go.

m Interpolate between weights and compute spring embedding.

— Works well in practice but gives complicated trajectories.

Alternative Solution:

m linear number of linear moves per vertex (worst-case opt.)

m complicated
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3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P3(Ks) =4

For any planar graph G,
clearly p3(G) = 1.

Note: p2(K,) € ©(n?).

(1)/6 S P3(K,) S (%
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Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):
minimum number of m-dimensional hyperplanes in R? s.t.

(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations

prt=7mt=1form >3  pi* = p5* and 7' = 75" for d > 3
T < Py p3 < p3 < p3 3 <3 <M
Interesting cases

m Line cover numbers in 2D and 3D: p%, pé, W%, 7T§
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Let G be a graph and 1 < m < d.
Affine cover number p7'(G):
minimum number of m-dimensional hyperplanes in R? s.t.

(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3  pi* = p5* and 7' = 75" for d > 3

2 1 1 2 1 1
T < Pg p3 < p3 < ps T3 < M3 S M
Interesting cases

m Line cover numbers in 2D and 3D: ,0%, ,0;%, W%, 7T§

m Plane cover numbers in 3D: p3, 73

Unfortunately, each of these numbers is NP-hard to compute :-(
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m Graphs are defined by a set of edges, which are sets of
two elements.
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Hypergraphs

m Hypergraphs can model any collection of sets.
> Hyperedges

Graph G = (V, FE) Hypergraph H = (V, F)
EC {{a,b} |a,beV} EC{X|XCV}
Example:

V' = {black, red, green, yellow, blue, white, orange}

E = {{red, white}, {black, red, yellow}, {blue, white, red},
{blue, yellow}, {green, white, red}, {green, white, orange},
{blue, black, white}, {blue, yellow, red}, {blue, white},
{green, red}, {red, yellow}}
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Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

B,

m spring embedder algorithm by Bertault and Eades 2000
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Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone
m for every zone there is a vertex in the corresponding intersection

m no two zones for the same intersection
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Concrete Euler Diagrams
EAT RESPONSIBILITY
m hyperedges are drawn as simple closed

= G0D  SPIDER

. : 4 N MAN
m intersections of hyperedges = zone A SANTA
. . | [N spanish
m for every zone there is a vertex in the c  INQUISITION

m no two zones for the same intersection
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m only proper crossings
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Examples:
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subset-based edge-based ZLykov incidence

drawing drawing representation representation
\ )
N
“planarity” planarity is equivalent in all three models € P
NP-complete

Oa- -------
Def.: Support of a hypergraph is a graph such that (/T]
every hyperedge induces a connected subgraph. c d
= planar support o o

Test for cycle-, tree-, or cactus-support is feasible.
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Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

. -y
@Q%. S| D D
T Ve Ve

weak embedding strong embedding full embedding

(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
} } }

always exists test is NP-hard can be tested

efficiently

m No results for more than 2 partitions or more general hypergraphs.
E.g., linear hypergraphs, where 2 hyperedges share at most 1 vertex.
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Final words

= Many important topics had to be left out ...

crossing numbers

clustered planarity

labeling

beyond planar graphs

right-angle-crossing drawings

universal point sets

topological drawings

representation as contact/intersection graphs
3d graph drawing

layered drawings

bus drawings

more subdivision drawings for hypergraphs

Thank you.
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