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- abstract (combinatorial)
graph

- drawing
(e.g. node-link diagram)

ALGORITHM

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

Evaluation is not task-driven
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Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

� restricted slopes

� restricted to grid points� restricted to grid points

� directed drawings

� monotone drawings, confluent drawings, partial edge drawing, radial
drawings, thick drawings, Lombardi drawings, ....
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Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

� angular resolution = size of the smallest angle

goal: large vertex resolution
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More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of

Improving on one measure often decreases another measure!

� and many more .....
� number of edge crossings

bends per edge
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Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

� trees (connected, no cycles)

� planar graphs (can be drawn without crossings)

� triangulations (maximal planar)

� planar 3-trees

� outerplanar graphs

� serial-parallel graphs

� k-connected

� ...
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Prominent graph classes by example

Trees

planar graphs

outerplanar graphspartial series-parallel graphs

planar 3-trees

4-connected
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Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Trw`

wr

w w = max{wl + 1, wr}

W (n) ≤W (n/2) + 1
W (n) = O(log n)

No row without vertex: H(n) = O(n)

Area O(n log n) for the upward grid drawing.

[Crescenzi, Di Battista, Piperno ’92]
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Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

≤ 2(n− 1)− 4 + 2 = 2n− 4 segments

3-connected planar graphs have an inductive construction sequence:

[Dujmović et al. ’05]

canonical ordering [De Fraysseix, Pach, Pollack ’90] @ boost C++ lib
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� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

Fij = 0 Fij = ωij(pi − pj)
(like a spring)(but pin a face)
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Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2
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Six Matchings: NO

In a K3,3-drawing at least two edges cross. For every pair of edges one
matching contains these.

[Brass et al. ’07]

[Cabello et al. ’07]
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Morphing
Given: Drawings of planar graphs G1 = (V,E1) and G2 = (V,E2).

Question: Can we continuously deform G1 to G2 without introducing
crossings?

Solution: [Floater & Gotsman ’99]:

� Compute (asymmetric) spring weights for the drawings of
G1/G2.

� Interpolate between weights and compute spring embedding.

→ Works well in practice but gives complicated trajectories.

Alternative Solution: [Angelini et al. ’14]:

� linear number of linear moves per vertex (worst-case opt.)

� complicated

Not ONE (geometric) graph with
vertices in different positions?
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3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = 4

For any planar graph G,
clearly ρ23(G) = 1.

Note: ρ23(Kn) ∈ Θ(n2).

Call the minimum number of planes needed ρ23(G).

(
n
2

)
/6 / ρ23(Kn) /

(
n
2

)
/3
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Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm
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Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
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requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

� Plane cover numbers in 3D: ρ23, π2
3

Unfortunately, each of these numbers is NP-hard to compute :-(
[WADS’17
& GD’19]
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Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }
Hypergraph H = (V,E)

E ⊆ {X | X ⊆ V }

Example:

V = {black, red, green, yellow, blue, white, orange}
{red, white}, {black, red, yellow}, {blue, white, red},
{blue, yellow}, {green, white, red}, {green, white, orange},
{blue, black, white}, {blue, yellow, red}, {blue, white},
{green, red}, {red, yellow}

}

Hyperedges

E =
{
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Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

� spring embedder algorithm by Bertault and Eades 2000
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� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

� no two zones for the same intersection

� only proper crossings

NO NO

NO

Euler Diagrams

Venn diagrams
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c
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b

d

f

Def.: Support of a hypergraph is a graph such that
a b

c d

e f

“planarity”
NP-complete

∈ P

= planar support

Test for cycle-, tree-, or cactus-support is feasible.

every hyperedge induces a connected subgraph.
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Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always existsalways exists can be tested
efficiently

test is NP-hard

� No results for more than 2 partitions or more general hypergraphs.
E.g., linear hypergraphs, where 2 hyperedges share at most 1 vertex.
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Final words

� Many important topics had to be left out ...

• crossing numbers
• clustered planarity
• labeling
• beyond planar graphs
• right-angle-crossing drawings
• universal point sets
• topological drawings
• representation as contact/intersection graphs
• 3d graph drawing
• layered drawings
• bus drawings
• more subdivision drawings for hypergraphs
• ...

Thank you.
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