
Drawing
Graphs
and
Hypergraphs
in 2D & 3D

hypergraphs

graphs

Alexander Wolff @ ICCG 2020

What is graph drawing?

What is graph drawing?

?

What is graph drawing?

?

- abstract (combinatorial)
graph

- drawing
(e.g. node-link diagram)

What is graph drawing?

?

- abstract (combinatorial)
graph

- drawing
(e.g. node-link diagram)

ALGORITHM

What is graph drawing?

?

- abstract (combinatorial)
graph

- drawing
(e.g. node-link diagram)

ALGORITHM

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

What is graph drawing?

?

- abstract (combinatorial)
graph

- drawing
(e.g. node-link diagram)

ALGORITHM

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

Evaluation is not task-driven

The many dimensions of graph drawing

graph drawing

The many dimensions of graph drawing

graph drawing

quality measure

The many dimensions of graph drawing

graph drawing

quality measure drawing style

The many dimensions of graph drawing

graph drawing

quality measure drawing style

graph class

The many dimensions of graph drawing

graph drawing

quality measure drawing style

graph class

representation

embedding space

The many dimensions of graph drawing

graph drawing

quality measure drawing style

graph class

representation

embedding space

(mostly node-link diagrams)

(mostly in the plane)

The many dimensions of graph drawing

graph drawing

quality measure drawing style

graph class

representation

embedding space

(mostly node-link diagrams)

(mostly in the plane)

The many dimensions of graph drawing

graph drawing

quality measure drawing style

graph class

representation

embedding space

(mostly node-link diagrams)

(mostly in the plane)

Drawing Styles

Drawing Styles

Drawing Styles

� straight-line vs. curved

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

bends

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

� restricted slopes

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

� restricted slopes

� restricted to grid points

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

� restricted slopes

� restricted to grid points� restricted to grid points

� directed drawings

Drawing Styles

� straight-line vs. curved

� straight-line vs. polyline

� restricted slopes

� restricted to grid points� restricted to grid points

� directed drawings

� monotone drawings, confluent drawings, partial edge drawing, radial
drawings, thick drawings, Lombardi drawings,

Classical Measures

Classical Measures

� vertex resolution

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

� angular resolution

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

� angular resolution = size of the smallest angle

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

� angular resolution = size of the smallest angle

Classical Measures

� vertex resolution =maximal distance between two vertices
minimal distance between two vertices

goal: small vertex resolution

� angular resolution = size of the smallest angle

goal: large vertex resolution

More Measures

More Measures

� grid size

More Measures

� grid size = area of the drawing using integer grid points

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of

� number of edge crossings

bends per edge

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of

� and many more
� number of edge crossings

bends per edge

More Measures

� grid size = area of the drawing using integer grid points

goal: small grid size

→ implies good vertex and angular resolution

� number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of

Improving on one measure often decreases another measure!

� and many more
� number of edge crossings

bends per edge

Graph classes

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

� trees (connected, no cycles)

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

� trees (connected, no cycles)

� planar graphs (can be drawn without crossings)

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

� trees (connected, no cycles)

� planar graphs (can be drawn without crossings)

� triangulations (maximal planar)

� planar 3-trees

� outerplanar graphs

� serial-parallel graphs

� k-connected

� ...

Prominent graph classes by example

Prominent graph classes by example

Trees

Prominent graph classes by example

Trees

planar graphs

Prominent graph classes by example

Trees

planar graphs

outerplanar graphs

Prominent graph classes by example

Trees

planar graphs

outerplanar graphspartial series-parallel graphs

Prominent graph classes by example

Trees

planar graphs

outerplanar graphspartial series-parallel graphs

planar 3-trees

Prominent graph classes by example

Trees

planar graphs

outerplanar graphspartial series-parallel graphs

planar 3-trees

4-connected

Standard techniques I

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Tr

1

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Trw`

wr

w w = max{wl + 1, wr}

1

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Trw`

wr

w w = max{wl + 1, wr}

W (n) ≤W (n/2) + 1
W (n) = O(log n)

1

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Trw`

wr

w w = max{wl + 1, wr}

W (n) ≤W (n/2) + 1
W (n) = O(log n)

No row without vertex: H(n) = O(n)

1

Standard techniques I

� If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

T` Tr

w.l.o.g. |T`| ≤ |Tr|T`

Trw`

wr

w w = max{wl + 1, wr}

W (n) ≤W (n/2) + 1
W (n) = O(log n)

No row without vertex: H(n) = O(n)

Area O(n log n) for the upward grid drawing.

[Crescenzi, Di Battista, Piperno ’92]

1

Standard techniques II

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments.

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.
[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

?

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

?

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

?

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

≤ 2(n− 1)− 4 + 2 = 2n− 4 segments

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

≤ 2(n− 1)− 4 + 2 = 2n− 4 segments

3-connected planar graphs have an inductive construction sequence:

[Dujmović et al. ’05]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

≤ 2(n− 1)− 4 + 2 = 2n− 4 segments

3-connected planar graphs have an inductive construction sequence:

[Dujmović et al. ’05]

canonical ordering [De Fraysseix, Pach, Pollack ’90]

Standard techniques II

� If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few segments. 8 vertices
12 edges

8 segments

Planar 3-trees can be drawn with 2n−4 segments.

3-tree before last addition
≤ 2(n− 1)− 4 segments

? ?

≤ 2(n− 1)− 4 + 2 = 2n− 4 segments

3-connected planar graphs have an inductive construction sequence:

[Dujmović et al. ’05]

canonical ordering [De Fraysseix, Pach, Pollack ’90] @ boost C++ lib

More ideas

More ideas

� The approach that works best in practice is the
spring embedder.

More ideas

� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

More ideas

� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

Fij = 0 Fij = ωij(pi − pj)
(like a spring)(but pin a face)

More ideas

� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

Fij = 0 Fij = ωij(pi − pj)
(like a spring)(but pin a face)

T
ut

te
’6

0

More ideas

� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

Fij = 0 Fij = ωij(pi − pj)
(like a spring)(but pin a face)

T
ut

te
’6

0

Fij =
c1

‖pi − pj‖1/2
(pj − pi) Fij = c2 log

(
‖pi − pj‖

c3

)
(pi − pj)

E
ad

es
’8

4

More ideas

� The approach that works best in practice is the
spring embedder.

� Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

Fij = 0 Fij = ωij(pi − pj)
(like a spring)(but pin a face)

T
ut

te
’6

0

Fij =
k2

‖pi − pj‖
(pj − pi) Fij =

‖pi − pj‖
k

(pi − pj)

Fr
uc

ht
er

m
an

R
ei

ng
ol

d
’9

2

Fij =
c1

‖pi − pj‖1/2
(pj − pi) Fij = c2 log

(
‖pi − pj‖

c3

)
(pi − pj)

E
ad

es
’8

4

Simultaneous embedding

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

[Brass et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

[Brass et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46

[Brass et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46

[Brass et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46

[Brass et al. ’07]

π1

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46

[Brass et al. ’07]

π2

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46

[Brass et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46
Six Matchings: NO

[Brass et al. ’07]

[Cabello et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46
Six Matchings: NO

[Brass et al. ’07]

[Cabello et al. ’07]

Question:

Simultaneous embedding
Given: Graphs G1 = (V,E1), G2 = (V,E2). . . .

Can we place V such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES

π1 = (v2, v1, v5, v3, v6, v4)
π2 = (v1, v5, v2, v6, v4, v3)

π2

π1

1
5
2
6
4
3

12 5 3 46
Six Matchings: NO

In a K3,3-drawing at least two edges cross. For every pair of edges one
matching contains these.

[Brass et al. ’07]

[Cabello et al. ’07]

Question:

Morphing

Morphing
Given: Drawings of planar graphs G1 = (V,E1) and G2 = (V,E2).

Question: Can we continuously deform G1 to G2 without introducing
crossings?

Not ONE (geometric) graph with
vertices in different positions?

Morphing
Given: Drawings of planar graphs G1 = (V,E1) and G2 = (V,E2).

Question: Can we continuously deform G1 to G2 without introducing
crossings?

Solution: [Floater & Gotsman ’99]:

� Compute (asymmetric) spring weights for the drawings of
G1/G2.

� Interpolate between weights and compute spring embedding.

Not ONE (geometric) graph with
vertices in different positions?

Morphing
Given: Drawings of planar graphs G1 = (V,E1) and G2 = (V,E2).

Question: Can we continuously deform G1 to G2 without introducing
crossings?

Solution: [Floater & Gotsman ’99]:

� Compute (asymmetric) spring weights for the drawings of
G1/G2.

� Interpolate between weights and compute spring embedding.

→ Works well in practice but gives complicated trajectories.

Not ONE (geometric) graph with
vertices in different positions?

Morphing
Given: Drawings of planar graphs G1 = (V,E1) and G2 = (V,E2).

Question: Can we continuously deform G1 to G2 without introducing
crossings?

Solution: [Floater & Gotsman ’99]:

� Compute (asymmetric) spring weights for the drawings of
G1/G2.

� Interpolate between weights and compute spring embedding.

→ Works well in practice but gives complicated trajectories.

Alternative Solution: [Angelini et al. ’14]:

� linear number of linear moves per vertex (worst-case opt.)

� complicated

Not ONE (geometric) graph with
vertices in different positions?

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

ρ23(K5) = ? K5

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

ρ23(K5) = ? K5

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

ρ23(K5) = ? K5

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

ρ23(K5) = ? K5

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.
Call the minimum number of planes needed ρ23(G).

K5ρ23(K5) = 3

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = ?

Call the minimum number of planes needed ρ23(G).

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = ?

Call the minimum number of planes needed ρ23(G).

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = 4

Call the minimum number of planes needed ρ23(G).

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = 4

For any planar graph G,
clearly ρ23(G) = 1.

Call the minimum number of planes needed ρ23(G).

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

ρ23(K6) = 4

For any planar graph G,
clearly ρ23(G) = 1.

Note: ρ23(Kn) ∈ Θ(n2).

Call the minimum number of planes needed ρ23(G).

(
n
2

)
/6 / ρ23(Kn) /

(
n
2

)
/3

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

Affine cover number ρmd (G):

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

ρmd = πm
d = 1 for m ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

πm
d ≤ ρmd

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

πm
d ≤ ρmd ρ23 ≤ ρ13 ≤ ρ12 π2

3 ≤ π1
3 ≤ π1

2

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

Interesting cases

� Line cover numbers in 2D and 3D: ρ12, ρ13, π1
2 , π1

3

πm
d ≤ ρmd ρ23 ≤ ρ13 ≤ ρ12 π2

3 ≤ π1
3 ≤ π1

2

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

Interesting cases

� Line cover numbers in 2D and 3D: ρ12, ρ13, π1
2 , π1

3

πm
d ≤ ρmd ρ23 ≤ ρ13 ≤ ρ12 π2

3 ≤ π1
3 ≤ π1

2

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

� Plane cover numbers in 3D: ρ23, π2
3

Affine Cover Numbers

Let G be a graph and 1 ≤ m < d.

Interesting cases

� Line cover numbers in 2D and 3D: ρ12, ρ13, π1
2 , π1

3

πm
d ≤ ρmd ρ23 ≤ ρ13 ≤ ρ12 π2

3 ≤ π1
3 ≤ π1

2

ρmd = πm
d = 1 for m ≥ 3 ρmd = ρm3 and πm

d = πm
3 for d ≥ 3

Affine cover number ρmd (G):

Weak affine cover number πm
d (G):

Observations

minimum number of m-dimensional hyperplanes in Rd s.t.
G has a crossing-free straight-line drawing that is contained
in these planes.

requires only vertices to be contained in the planes.

“Collapse of the Affine Hierarchy”

� Plane cover numbers in 3D: ρ23, π2
3

Unfortunately, each of these numbers is NP-hard to compute :-(
[WADS’17
& GD’19]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18]

[Scherm, B.Th.’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Line Cover Numbers of the Platonic Solids

G = (V,E) |V | |E| |F | ρ12(G) ρ13(G) π1
2(G) π1

3(G)

tetrahedron 4 6 4 6 6 2 2
cube 8 12 6 7 7 2 2
octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

[Kryven et al., CALDAM’18] [Firman, MTh. ’17]

Graphs vs. Sets

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

A B

C D

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

A B

C D

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

A B

C D

� Hierarchical data can be describes by a tree

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

A B

C D

� Hierarchical data can be describes by a tree

Graphs vs. Sets

� Graphs are defined by a set of edges, which are sets of
two elements.

{A,B}, {C,D},
{D,A}, {A,C}

A B

C D

� Hierarchical data can be describes by a tree

Hypergraphs

Hypergraphs

� Hypergraphs can model any collection of sets.

Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }

Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }
Hypergraph H = (V,E)

E ⊆ {X | X ⊆ V }

Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }
Hypergraph H = (V,E)

E ⊆ {X | X ⊆ V }

Hyperedges

Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }
Hypergraph H = (V,E)

E ⊆ {X | X ⊆ V }

Example:

V = {black, red, green, yellow, blue, white, orange}

Hyperedges

Hypergraphs

� Hypergraphs can model any collection of sets.

Graph G = (V,E)

E ⊆ {{a, b} | a, b ∈ V }
Hypergraph H = (V,E)

E ⊆ {X | X ⊆ V }

Example:

V = {black, red, green, yellow, blue, white, orange}
{red, white}, {black, red, yellow}, {blue, white, red},
{blue, yellow}, {green, white, red}, {green, white, orange},
{blue, black, white}, {blue, yellow, red}, {blue, white},
{green, red}, {red, yellow}

}

Hyperedges

E =
{

Hypergraph drawing

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

Hypergraph drawing

� Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

� Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})
A B C

D

� spring embedder algorithm by Bertault and Eades 2000

Hypergraph drawing cont.

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

– drawn as node-link diagram,
with vertices as some nodes

– hyperedges yield connected
subgraphs

– ... and more criteria

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

– drawn as node-link diagram,
with vertices as some nodes

– hyperedges yield connected
subgraphs

– ... and more criteria

AB

C D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

– drawn as node-link diagram,
with vertices as some nodes

– hyperedges yield connected
subgraphs

– ... and more criteria

AB

C D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

– drawn as node-link diagram,
with vertices as some nodes

– hyperedges yield connected
subgraphs

– ... and more criteria

AB

C D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Hypergraph drawing cont.

� Subset-based method gets easily confusing.

� Alternatives: subdivision-based & edge-based

– vertices are regions
– hyperedges yield

connected unions
– ... and more criterions

A B C

D

– drawn as node-link diagram,
with vertices as some nodes

– hyperedges yield connected
subgraphs

– ... and more criteria

AB

C D

H =
(
{A,B,C,D},

{
{A,B}, {B,C,D}, {A,D,C}

})

Subdivision-based methods

Subdivision-based methods
Concrete Euler Diagrams

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

planar graphs

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

� no two zones for the same intersection

NO

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

� no two zones for the same intersection

� only proper crossings

NO NO

NO

Subdivision-based methods
Concrete Euler Diagrams

� hyperedges are drawn as simple closed curves (interior/exterior)

� intersections of hyperedges = zone

� for every zone there is a vertex in the corresponding intersection

� no two zones for the same intersection

� only proper crossings

NO NO

NO

Euler Diagrams

Venn diagrams

Edge-based methods

Edge-based methods

a b

c d

e f

subset-based
drawing

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a

c

e

b

d

f

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

a

c

e

b

d

f

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

“planarity”
NP-complete

∈ P

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Def.: Support of a hypergraph is a graph such that
a b

c d

e f

“planarity”
NP-complete

∈ P

every hyperedge induces a connected subgraph.

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Def.: Support of a hypergraph is a graph such that
a b

c d

e f

“planarity”
NP-complete

∈ P

= planar support

every hyperedge induces a connected subgraph.

Edge-based methods

Examples:

a b

c d

e f

subset-based
drawing

a b

c d

e f

edge-based
drawing

Zykov
representation

a
b
c
d
e

f

incidence
representation

planarity is equivalent in all three models

a

c

e

b

d

f

Def.: Support of a hypergraph is a graph such that
a b

c d

e f

“planarity”
NP-complete

∈ P

= planar support

Test for cycle-, tree-, or cactus-support is feasible.

every hyperedge induces a connected subgraph.

Simultaneous embeddings of hypergraphs

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always exists

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always existsalways exists can be tested
efficiently

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always existsalways exists can be tested
efficiently

test is NP-hard

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always existsalways exists can be tested
efficiently

test is NP-hard

� No results for more than 2 partitions or more general hypergraphs.

Simultaneous embeddings of hypergraphs

� Athenstädt et al. [GD’14] studied embeddings of two partitions:

3 Models

weak embedding
(no crossing sets)

strong embedding
(+ no empty intersections)

full embedding
(+ only pseudodisks)

always existsalways exists can be tested
efficiently

test is NP-hard

� No results for more than 2 partitions or more general hypergraphs.
E.g., linear hypergraphs, where 2 hyperedges share at most 1 vertex.

Final words

Final words

� Many important topics had to be left out ...

Final words

� Many important topics had to be left out ...

• crossing numbers
• clustered planarity
• labeling
• beyond planar graphs
• right-angle-crossing drawings
• universal point sets
• topological drawings
• representation as contact/intersection graphs
• 3d graph drawing
• layered drawings
• bus drawings
• more subdivision drawings for hypergraphs
• ...

Final words

� Many important topics had to be left out ...

• crossing numbers
• clustered planarity
• labeling
• beyond planar graphs
• right-angle-crossing drawings
• universal point sets
• topological drawings
• representation as contact/intersection graphs
• 3d graph drawing
• layered drawings
• bus drawings
• more subdivision drawings for hypergraphs
• ...

Thank you.

	\bf What is graph drawing?
	\bf 3D
	\bf Affine Cover Numbers
	\bf Line Cover Numbers of the Platonic Solids
	\bf Final words

