Drawing
hypergraphs Gra P hs

and
Hypergraphs
in 2D & 3D

Alexander Wolff @ [CCG 2020

What is graph drawing?

What is graph drawing?

What is graph drawing?

- abstract (combinatorial) - drawing
graph (e.g. node-link diagram)

What is graph drawing?

- abstract (combinatorial) - drawing
graph (e.g. node-link diagram)

What is graph drawing?

- abstract (combinatorial) - drawing
graph (e.g. node-link diagram)

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

What is graph drawing?

- abstract (combinatorial) - drawing
graph (e.g. node-link diagram)

Goal: Algorithm guarantees a (provable) geometric quality
measure in the worst case

Evaluation is not task-driven

The many dimensions of graph drawing

————
e

ey
’’’’’’

" n L4
......

-
¢' .y

-y

......
u

ug?

The many dimensions of graph drawing

quality measure

" n L4
......

-
¢' .Q

-y

......
u

ug?

The many dimensions of graph drawing

quality measure drawing style

" n L4
......

-
¢' .Q

-y

......
u

ug?

The many dimensions of graph drawing

quality measure drawing style

" n *
''''''

-
¢' .Q

L
......
u
ug?

graph class

The many dimensions of graph drawing

quality measure drawing style

" n *
''''''

representation

-
O' .5

L
......
u
ug?

graph class embedding space

The many dimensions of graph drawing

quality measure drawing style

representation

(mostly node-link diagrams)

embedding space

graph class (mostly in the plane)

The many dimensions of graph drawing

quality measure drawing style

representation

(mostly node-link diagrams)

-
o' .y

embedding space

graph class (mostly in the plane)

The many dimensions of graph drawing

quality measure drawing style

representation

(mostly node-link diagrams)

-
o' .y

embedding space

graph class (mostly in the plane)

Drawing Styles

Drawing Styles

Drawing Styles

m straight-line vs. curved

Drawing Styles

m straight-line vs. curved

m straight-line vs. polyline

Drawing Styles

bends

m straight-line vs. curved

m straight-line vs. polyline

Drawing Styles

m straight-line vs. curved
m straight-line vs. polyline

m restricted slopes

Drawing Styles

m straight-line vs. curved
m straight-line vs. polyline
m restricted slopes

m restricted to grid points

Drawing Styles

m straight-line vs. curved

m straight-line vs. polyline
m restricted slopes

m restricted to grid points

m directed drawings

Drawing Styles

m straight-line vs. curved

m straight-line vs. polyline
m restricted slopes

m restricted to grid points
m directed drawings

m monotone drawings, confluent drawings, partial edge drawing, radial
drawings, thick drawings, Lombardi drawings,

Classical Measures

Classical Measures

m vertex resolution

Classical Measures

- __maximal distance between two vertices
m vertex FESO|UtI0n " minimal distance between two vertices

Classical Measures

- __maximal distance between two vertices
m vertex resolutlon " minimal distance between two vertices

goal: small vertex resolution

Classical Measures

- __maximal distance between two vertices
m vertex resolutlon " minimal distance between two vertices

goal: small vertex resolution

m angular resolution

Classical Measures

- __maximal distance between two vertices
m vertex resolutlon " minimal distance between two vertices

goal: small vertex resolution

m angular resolution = size of the smallest angle

Classical Measures

- __maximal distance between two vertices
m vertex resolutlon " minimal distance between two vertices

goal: small vertex resolution

m angular resolution = size of the smallest angle

Classical Measures

- __maximal distance between two vertices
m vertex FESO|UtIOn " minimal distance between two vertices

goal: small vertex resolution

m angular resolution = size of the smallest angle

goal: large vertex resolution

More Measures

More Measures

m grid size

More Measures

m grid size = area of the drawing using integer grid points

More Measures

m grid size = area of the drawing using integer grid points

/ \\\] =
/é{/ \ "~ goal: small grid size

More Measures

m grid size = area of the drawing using integer grid points

/ \\\] =
/é{/ \ "~ goal: small grid size

&7 — implies good vertex and angular resolution

More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

m number of edge crossings

More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

m number of edge crossings
m and many more

More Measures

m grid size = area of the drawing using integer grid points

AN

ginuin goal: small grid size

> N _ _ :

&7 — implies good vertex and angular resolution
N\ /

m number of bends

goal: minimize the number of total bends

goal: minimize the maximal number of
bends per edge

m number of edge crossings
m and many more

Improving on one measure often decreases another measure!

Graph classes

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

m trees (connected, no cycles)

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

m trees (connected, no cycles)

m planar graphs (can be drawn without crossings)

Graph classes

Many problems become feasible or meaningful, only when the
graph class is restricted:

m trees (connected, no cycles)
m planar graphs (can be drawn without crossings)

m triangulations (maximal planar)

m planar 3-trees
m outerplanar graphs
m serial-parallel graphs

m k-connected

Prominent graph classes by example

Prominent graph classes by example

Prominent graph classes by example

planar graphs

NZS

Prominent graph classes by example

planar graphs

NZS

outerplanar graphs

P~

Trees

Prominent graph classes by example

planar graphs

NZS

partial series-parallel graphs

outerplanar graphs

P~

Trees

Prominent graph classes by example

planar graphs

NZS

planar 3-trees

partial series-parallel graphs

outerplanar graphs

P~

Trees

Prominent graph classes by example

4-connected

planar graphs

NZ8

planar 3-trees

partial series-parallel graphs

outerplanar graphs

P~

Trees

Standard techniques |

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees:

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees: /\

AN

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

Binary trees: /\

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
Tg T o—————
1

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
1y T (
Wy 1,
Wy

” w = max{w; + 1, w,}

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
Ao &
T ——
“wy T,
Tw,
w
Win) <W(n/2)+1
W(n) = O(logn)

w.log. |Ty| <|T)]

w = max{w; + 1, w,}

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
V/\V ‘ TE W.|.O.g. ‘Tg‘ < ‘Tr‘
Ty T (
wy 1,
Wy
” w = max{w; + 1, w,}

Win) <W(n/2)+1
W(n) = O(logn)

No row without vertex: H(n) = O(n)

Standard techniques |

m If your graph class has a recursive description,
construct the graph drawing recursively.

1
Binary trees: -
/\V ‘ T, w.l.o.g. [Ty| < |T}]|

) il L —
wy 1,
Wy
” w = max{w; + 1, w,}

Wi(n)<W(n/2)+1
W(n) = O(logn)

No row without vertex: H(n) = O(n)
Area O(nlogn) for the upward grid drawing.

[Crescenzi, Di Battista, Piperno '92]

Standard techniques ||

Standard techniques ||

m If your graph class has an inductive construction,
build the graph drawing inductively.

Standard techniques ||

m If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few

Standard techniques ||

m If your graph class has an inductive construction,
build the graph drawing inductively.

Goal: Draw a graph with few 8 vertices

12 edges
8

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

A A

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

AA A

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

8 vertices
12 edges
8

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

8 vertices
12 edges
8

<2(n—1)—4+2=2n — 4 segments

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

8 vertices
12 edges
8

<2(n—1)—4+2=2n— 4 segments

3-connected planar graphs have an inductive construction sequence:

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few

Planar 3-trees can be drawn with 2n —4

3-tree before last addition
< 2(n —1) — 4 segments

8 vertices
12 edges
8

<2(n—1)—4+2=2n— 4 segments

3-connected planar graphs have an inductive construction sequence:

canonical ordering

Standard techniques ||

m If your graph class has an inductive construction,

build the graph drawing inductively.

Goal: Draw a graph with few 3 vertices
12 edges
3

Planar 3-trees can be drawn with 2n —4

3-tree before last addition

< 2(n —1) — 4 segments <2(n—1)—4+2=2n — 4 segments

3-connected planar graphs have an inductive construction sequence:
canonical ordering © boost C++ lib

More ideas

More ideas

m [he approach that works best in practice is the
spring embedder.

More ideas

m [he approach that works best in practice is the
spring embedder.

m Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract

More ideas

m [he approach that works best in practice is the
spring embedder.

m Model the graph as a physical system:
1. all vertices repel 2. adjacent vertices attract

Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)

More ideas

m [he approach that works best in practice is the
spring embedder.

m Model the graph as a physical system:
1. all vertices repel 2. adjacent vertices attract

Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)

More ideas

The approach that works best in practice is the
spring embedder.

Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract
Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)

C1

Pi — Py
Fij = [1/2 (pj —pi) Lij = c2 10g<H JH)(pz — ;)

|pi — pj] c3

More ideas

The approach that works best in practice is the
spring embedder.

Model the graph as a physical system:

1. all vertices repel 2. adjacent vertices attract
Fi; =0 Fi; = Wij(pz' — pj)
(but pin a face) (like a spring)
c1 lpi —pj
Fij = (pj — pi) Fi'20210g< (Pi — pj)
lpi —pylI*/2 ™ ! c3 !
k? lpi — pj
Fij = (pj — i) Fij = =———=(pi = ;)

lpi — pj

Simultaneous embedding

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES
[Brass et al. '07]

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

Two paths: YES
[Brass et al. '07]

T = (’(}2,’01,?)5,?)3,”06,?]4)
o = (’Ul,U5,U2,’UG,’U4,U3)

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3
[Brass et al. '07] g°‘
™ = (UQ,Ul,U5,U3,U6,U4) g:
T = (,017/057?]27/067/047?}3) 1 —

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3 o
[Brass et al. '07] 4 7
6 — o
m = (UQ,’Ul,U5,7}3,’U6,U4) 21 °
T = (,017/057?]27/067/047?}3) ?: o ’

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3 o
[Brass et al. '07] 4 °
6 — o
T = (?}2,’01,?)5,?}3,’06,”04) 27 ° (%]
T = (,017/057?]27/067/047?}3) ?: o ”

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3 o
[Brass et al. '07] g°‘
T = (’(}2,’01,?)5,?)3,”06,?]4) g: Uy
T = (U17U5,U2,’06,’U4,U3) 1 —

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3 o
[Brass et al. '07] 4 — \)
0 — |
m = (’(}2,’01,?)5,?}3,’06,?}4) g: <
Mo — (01,715,?]2,116,?}4,?}3) 1 o',o

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3
[Brass et al. '07] 4 \
0 — |
T = (v2,v1, Vs, U3, Vg, Vs) g: <
Ty — (Ul,’l}5,?]2,?)6,’04,?}3) 1o O‘,'
Six Matchings: NO rrrrorro -

[Cabello et al. "07]

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3
[Brass et al. '07] g°‘ \

o | %
™ = (?}2,?]1,?)5,?}3,”06,’04) g: <
Ty — (Ul,?}5,?]2,?)6,’04,?}3) 1o O‘,'
Six Matchings: NO éiéééi ;
1

[Cabello et al. '07]

[T ITX X1 2% X 2K

Simultaneous embedding

Given: Graphs G1 = (V, F1),Gs = (V, E5). ...
Question: Can we place V' such that each of these graphs has a planar
(straight-line) drawing?

TTo A
Two paths: YES 3
[Brass et al. '07] 4 \
0 — |
T = (v2,v1, Vs, V3, Vs, V4) g:: °<
Ty — (?}1,’05,?]2,?)6,’04,?}3) 1o o‘,'
Six Matchings: NO rrrrorro -

[Cabello et al. '07]

[T ITX X1 2% X 2K

In a K3 3-drawing at least two edges cross. For every pair of edges one
matching contains these.

Morphing

Morphing
Given: Drawings of planar graphs G; = (V, E1) and G4 = (V, E»).

Question: Can we continuously deform G; to GG without introducing
crossings’?

Morphing
Given: Drawings of planar graphs Gy, = (V, E1) and G2 = (V, E5).

Question: Can we continuously deform G; to GG without introducing
crossings’?

Solution:

m Compute (asymmetric) spring weights for the drawings of

G1/Go.

m Interpolate between weights and compute spring embedding.

Morphing
Given: Drawings of planar graphs Gy, = (V, E1) and G2 = (V, E5).

Question: Can we continuously deform G; to GG without introducing
crossings’?

Solution:

m Compute (asymmetric) spring weights for the drawings of

G1/Go.

m Interpolate between weights and compute spring embedding.

— Works well in practice but gives complicated trajectories.

Morphing
Given: Drawings of planar graphs Gy, = (V, E1) and G2 = (V, E5).

Question: Can we continuously deform G; to GG without introducing
crossings’?

Solution:

m Compute (asymmetric) spring weights for the drawings of

G1/Go.

m Interpolate between weights and compute spring embedding.

— Works well in practice but gives complicated trajectories.

Alternative Solution:

m linear number of linear moves per vertex (worst-case opt.)

m complicated

3D

Given a graph G, find a set of planes in 3-space
such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) = 3]

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P(Ks) =7

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P3(Ks) =4

For any planar graph G,
clearly p3(G) = 1.

3D

Given a graph G, find a set of planes in 3-space

such that there is a crossing-free straight-line drawing of G
with all vertices and edges drawn on these planes.

Call the minimum number of planes needed p3(G).

P3(Ks) =4

For any planar graph G,
clearly p3(G) = 1.

Note: p2(K,) € ©(n?).

(1)/6 S P3(K,) S (%

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
pht =mht =1 form > 3

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

Tt < plt

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):

minimum number of m-dimensional hyperplanes in R? s.t.
(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

2 1 1 2 1 1
T < Pg p3 < p3 < ps T3 < M3 S M

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):
minimum number of m-dimensional hyperplanes in R? s.t.

(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations

prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3
T < Py p3 < p3 < p3 3 <3 <M
Interesting cases

m Line cover numbers in 2D and 3D: p%, pé, W%, 7T§

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):
minimum number of m-dimensional hyperplanes in R? s.t.

(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

2 1 1 2 1 1
T < Pg p3 < p3 < ps T3 < M3 S M
Interesting cases

m Line cover numbers in 2D and 3D: ,0%, pé, W%, 7T§

m Plane cover numbers in 3D: p3, 73

Affine Cover Numbers

Let G be a graph and 1 < m < d.
Affine cover number p7'(G):
minimum number of m-dimensional hyperplanes in R? s.t.

(G has a crossing-free straight-line drawing that is contained
In these planes.

Weak affine cover number 7' (G):
requires only vertices to be contained in the planes.

Observations
prt=7mt=1form >3 pi* = p5* and 7' = 75" for d > 3

2 1 1 2 1 1
T < Pg p3 < p3 < ps T3 < M3 S M
Interesting cases

m Line cover numbers in 2D and 3D: ,0%, ,0;%, W%, 7T§

m Plane cover numbers in 3D: p3, 73

Unfortunately, each of these numbers is NP-hard to compute :-(

Line Cover Numbers of the Platonic Solids

G=WV,E) VI |El |FI p(G) p3(G) m(G) m3(G)
tetrahedron 4 6 4
cube 3 12 §)
octahedron 6 12 3
dodecahedron 20 30 12
icosahedron 12 30 20

Line Cover Numbers of the Platonic Solids

G=WV,E) VI |El |FI p(G) p3(G) m(G) m3(G)
tetrahedron 4 6 4
cube 3 12 §)
octahedron 6 12 3
dodecahedron 20 30 12
icosahedron 12 30 20

Line Cover Numbers of the Platonic Solids

G=WV,E) V| |El |F| p3(G) p3(G) m(G) m3(G)
tetrahedron 4 6 4 6 6

cube 3 12 6 14 {

octahedron §) 12 3 9 9

dodecahedron 20 30 12 9 10 9 10

icosahedron

pdiadiy

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) | m3(G) m3(G)
tetrahedron 4 6 4 § 6

cube 3 12 6 Y4 Y4

octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10

iIcosahedron

12 30 20 13...15 13...15

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) | m3(G) m3(G)
tetrahedron 4 6 4 § 9 2

cube 3 12 6 Y4 7 2
octahedron 6 12 3 0 0

dodecahedron| 20 30 12 9...10 9...10 2

Icosahedron 12 30 20 13...15 13...15

= o ®

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) | m3(G)
tetrahedron 4 6 4 § 6
cube 3 12 6 Y4 Y4
octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10
Icosahedron 12 30 20 13...15 13...15

LWHN WDNDDN

= o ®

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) m3(G)
tetrahedron 4 6 4 § 6
cube 3 12 6 Y4 Y4
octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10
Icosahedron 12 30 20 13...15 13...15

LWHN WDNDDN

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) m3(G)
tetrahedron 4 6 4 § 9 2
cube 3 12 6 Y4 7 2
octahedron 6 12 3 0 0 3
dodecahedron| 20 30 12 9...10 9...10 2

3

Icosahedron 12 30 20 13...15 13...15

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) m3(G)
tetrahedron 4 6 4 § 6
cube 3 12 6 Y4 Y4
octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10
Icosahedron 12 30 20 13...15 13...15

LWHN WDNDDN

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) m3(G)
tetrahedron 4 6 4 § 6
cube 3 12 6 Y4 Y4
octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10
Icosahedron 12 30 20 13...15 13...15

LWHN WDNDDN

Line Cover Numbers of the Platonic Solids

G=\V,E) VI |E] [F|] = pa(G) p3(G) (G) | m3(G
tetrahedron 4 6 4 6 6 2 2
cube 3 12 6 { 7 2 2
octahedron 6 12 3 0 9 3 2
dodecahedron 20 30 12 9...10 9...10 2 2
icosahedron 12 30 20 13...15 13...15 3

Line Cover Numbers of the Platonic Solids

G=\V,E) VI |E] [F|] = pa(G) p3(G) (G) | m3(G
tetrahedron 4 6 4 6 6 2 2
cube 3 12 6 { 7 2 2
octahedron 6 12 3 0 9 3 2
dodecahedron 20 30 12 9...10 9...10 2 2
icosahedron 12 30 20 13...15 13...15 3

Line Cover Numbers of the Platonic Solids

G=\V,E) VI |E] [F|] = pa(G) p3(G) (G) | m3(G
tetrahedron 4 6 4 6 6 2 2
cube 3 12 6 { 7 2 2
octahedron 6 12 3 0 9 3 2
dodecahedron 20 30 12 9...10 9...10 2 2
icosahedron 12 30 20 13...15 13...15 3

Line Cover Numbers of the Platonic Solids

G=\V,E) VI |E] [F|] = pa(G) p3(G) (G) | m3(G
tetrahedron 4 6 4 6 6 2 2
cube 3 12 6 { 7 2 2
octahedron 6 12 3 0 9 3 2
dodecahedron 20 30 12 9...10 9...10 2 2
icosahedron 12 30 20 13...15 13...15 3 2

Line Cover Numbers of the Platonic Solids

G=(V,E) Vi |E] | p3(G) p3(G) m(G) | m3(G
tetrahedron 4 6 4 § 6
cube 3 12 6 Y4 Y4
octahedron 6 12 3 0 0

dodecahedron 20 30 12 9...10 9...10
Icosahedron 12 30 20 13...15 13...15

LWHN WDNDDN
NN DN NN

Graphs vs. Sets

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of
two elements.

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of
two elements.

14, B}, 10, Dy,
{D, A},{A,C}

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of

two elements.
A B

{A, B}, {C, D}, I\:
{D, A}, {A,C}

C D

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of

two elements.
A B

{A, B}, {C, D}, I\:
{D, A}, {A,C}

C

D

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of

two elements.
A B

{A, B}, {C, D}, I\:
{D, A}, {A,C}

C

D

m Hierarchical data can be describes by a tree

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of
two elements. . -

{A,BY,{C, D}, °
{D, A}, {A,C} : >
C

m Hierarchical data can be describes by a tree

i
G
il 4

§

| -
===i!."li----... £ B
T =X 'll'iﬁ miE =

BB el i - TTET

Graphs vs. Sets

m Graphs are defined by a set of edges, which are sets of
two elements.

14, B}, 10, Dy,
{D,A},{A,C}

A B
®

C

m Hierarchical data can be describes by a tree
[
PETERE
==!.Il B =y
=
.

i i II
i I.
b

i

Hypergraphs

Hypergraphs

m Hypergraphs can model any collection of sets.

Hypergraphs
m Hypergraphs can model any collection of sets.

Graph G = (V, E)
E C {{a,b} | a,be V}

Hypergraphs
m Hypergraphs can model any collection of sets.

Graph G = (V, F) Hypergraph H = (V, F)
EC {{a,b} |a,beV} EC{X|XCV}

Hypergraphs

m Hypergraphs can model any collection of sets.
> Hyperedges

Graph G = (V, F) Hypergraph H = (V, F)
EC {{a,b} |a,beV} EC{X|XCV}

Hypergraphs

m Hypergraphs can model any collection of sets.
> Hyperedges

Graph G = (V, FE) Hypergraph H = (V, F)
EC {{a,b} |a,beV} EC{X|XCV}
Example:

V' = {black, red, green, yellow, blue, white, orange}

Hypergraphs

m Hypergraphs can model any collection of sets.
> Hyperedges

Graph G = (V, FE) Hypergraph H = (V, F)
EC {{a,b} |a,beV} EC{X|XCV}
Example:

V' = {black, red, green, yellow, blue, white, orange}

E = {{red, white}, {black, red, yellow}, {blue, white, red},
{blue, yellow}, {green, white, red}, {green, white, orange},
{blue, black, white}, {blue, yellow, red}, {blue, white},
{green, red}, {red, yellow}}

Hypergraph drawing

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

A. B. CQ

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

A. B. CQ

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

A. B. CQ

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

B,

Hypergraph drawing

m Many ideas have been proposed to generalize graph
drawing methodology for hypergraphs.

= Subset-based method:
draw for every hyperedge a curve enclosing its vertices

H — ({A,B,C,D}, {{A,B},{Bﬁ»D}»{A’D’C}})

B,

m spring embedder algorithm by Bertault and Eades 2000

Hypergraph drawing cont.

Hypergraph drawing cont.

m Subset-based method gets easily confusing.

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

g

— vertices are regions

— hyperedges vyield
connected unions

— ... and more criterions

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

g

— vertices are regions

— hyperedges vyield
connected unions

— ... and more criterions

AlB]C
D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

g

— vertices are regions

— hyperedges vyield
connected unions

— ... and more criterions

Al Bl C
D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

g

— vertices are regions

— hyperedges vyield
connected unions

— ... and more criterions

A B|cC
D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

g

— vertices are regions

— hyperedges vyield
connected unions

— ... and more criterions

Al BlC

D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

e \

— vertices are regions — drawn as node-link diagram,
— hyperedges yield with vertices as some nodes

connected unions — hyperedges yield connected
— ... and more criterions subgraphs

— ... and more criteria

AlB]C
D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

e \

— vertices are regions — drawn as node-link diagram,
— hyperedges yield with vertices as some nodes

connected unions — hyperedges yield connected
— ... and more criterions subgraphs

— ... and more criteria

AlB]C B A
; <
C D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

e \

— vertices are regions — drawn as node-link diagram,
— hyperedges yield with vertices as some nodes

connected unions — hyperedges yield connected
— ... and more criterions subgraphs

— ... and more criteria

AlB]C B A
7 <
C D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

e \

— vertices are regions — drawn as node-link diagram,
— hyperedges yield with vertices as some nodes

connected unions — hyperedges yield connected
— ... and more criterions subgraphs

— ... and more criteria

AlB]C B A
D
(J: :D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Hypergraph drawing cont.

m Subset-based method gets easily confusing.
m Alternatives: subdivision-based & edge-based

e \

— vertices are regions — drawn as node-link diagram,
— hyperedges yield with vertices as some nodes

connected unions — hyperedges yield connected
— ... and more criterions subgraphs

— ... and more criteria

AlB]C
D

H— ({A,B,C,D}, {{A,B},{Bﬁ»D}v{AvD’C}})

Subdivision-based methods

Subdivision-based methods

Concrete Euler Diagrams

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)

(O

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)

m intersections of hyperedges = zone

(O
Sh

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)

m intersections of hyperedges = zone

(O
Sh

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone

m for every zone there is a vertex in the corresponding intersection

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone

m for every zone there is a vertex in the corresponding intersection

Subdivision-based methods
Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone

m for every zone there is a vertex in the corresponding intersection

|90 | 7 | A\

2 S

Subdivision-based methods

Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone

m for every zone there is a vertex in the corresponding intersection

m no two zones for the same intersection

é: /2 NO

Subdivision-based methods

Concrete Euler Diagrams

m hyperedges are drawn as simple closed curves (interior/exterior)
m intersections of hyperedges = zone
m for every zone there is a vertex in the corresponding intersection

m no two zones for the same intersection

é: /2 NO

m only proper crossings

TR /N{

Subdivision-based methods

Concrete Euler Diagrams
EAT RESPONSIBILITY
m hyperedges are drawn as simple closed

= G0D SPIDER

. : 4 N MAN
m intersections of hyperedges = zone A SANTA
. . | [N spanish
m for every zone there is a vertex in the c INQUISITION

m no two zones for the same intersection

MNO

m only proper crossings

alFH <

Edge-based methods

Edge-based methods

%

subset-based
drawing

Edge-based methods

%

subset-based
drawing

Examples:

edge-based
drawing

Edge-based methods

subset-based
drawing

Examples:

b

.I’.'

edge-based
drawing

3 b

c d

e f
Zykov

representation

Edge-based methods

Examples:

m
o o
@) 45)
—h o o
-+ ® Q. N T w

subset-based edge-based Lykov incidence
drawing drawing representation representation

Edge-based methods

Examples:

d

e b a b b

C

C d C d d

€

e f e f f

subset-based edge-based Lykov incidence
drawing drawing representation representation
\)

N
planarity is equivalent in all three models

Edge-based methods

Examples:

d

a b b

C

C d d

€

€ f f

subset-based edge-based Lykov incidence
drawing drawing representation representation
\)

N
planarity is equivalent in all three models

Edge-based methods

Examples:

d

a b b

C

C d d

€

€ f f

subset-based edge-based Lykov incidence
drawing drawing representation representation
\)

N
planarity is equivalent in all three models

Edge-based methods

Examples:

d

a b b

C

C d d

€

€ f f

subset-based edge-based ZLykov incidence
drawing drawing representation representation
\)
N
“planarity” planarity is equivalent in all three models € P

NP-complete

Edge-based methods

Examples:

m
o o
@) 45)
—h o~ o
-+ ® Q. N T w

e f e

subset-based edge-based ZLykov incidence

drawing drawing representation representation
\)
N
“planarity” planarity is equivalent in all three models € P
NP-complete

Oa- -------
Def.: Support of a hypergraph is a graph such that (/T]
every hyperedge induces a connected subgraph. c d
O 0

Edge-based methods

Examples:

m
o o
@) 45)
—h o~ o
-+ ® Q. N T w

e f e

subset-based edge-based ZLykov incidence

drawing drawing representation representation
\)
N
“planarity” planarity is equivalent in all three models € P
NP-complete

Oa- -------
Def.: Support of a hypergraph is a graph such that (/T]
every hyperedge induces a connected subgraph. c d

— planar support > x

Edge-based methods

Examples:

m
o o
(@) o5}
o o
-+ ® Q. N T w

e f e f

subset-based edge-based ZLykov incidence

drawing drawing representation representation
\)
N
“planarity” planarity is equivalent in all three models € P
NP-complete

Oa- -------
Def.: Support of a hypergraph is a graph such that (/T]
every hyperedge induces a connected subgraph. c d
= planar support o o

Test for cycle-, tree-, or cactus-support is feasible.

Simultaneous embeddings of hypergraphs

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

weak embedding
(no crossing sets)

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

weak embedding strong embedding
(no crossing sets) |(+ no empty intersections)

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

weak embedding strong embedding

(no crossing sets) |(+ no empty intersections)

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

weak embedding strong embedding full embedding
(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

weak embedding strong embedding full embedding
(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

\/ ; o D

weak embedding strong embedding full embedding
(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
}

always exists

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

. -y
@Qﬂ N> 2 WS
T Ve Ve

weak embedding strong embedding full embedding

(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
} t

always exists can be tested

efficiently

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

. -y
@Q%. N> 2 WS
T Ve Ve

weak embedding strong embedding full embedding

(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
t } t

always exists test is NP-hard can be tested

efficiently

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

. -y
@@ S| D D
T Ve Ve

weak embedding strong embedding full embedding

(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
t } t

always exists test is NP-hard can be tested

efficiently

m No results for more than 2 partitions or more general hypergraphs.

Simultaneous embeddings of hypergraphs

m Athenstadt et al. [GD'14] studied embeddings of two partitions:
3 Models

. -y
@Q%. S| D D
T Ve Ve

weak embedding strong embedding full embedding

(no crossing sets) |(-+ no empty intersections) (+ only pseudodisks)
} } }

always exists test is NP-hard can be tested

efficiently

m No results for more than 2 partitions or more general hypergraphs.
E.g., linear hypergraphs, where 2 hyperedges share at most 1 vertex.

Final words

Final words

= Many important topics had to be left out ...

Final words

= Many important topics had to be left out ...

crossing numbers

clustered planarity

labeling

beyond planar graphs

right-angle-crossing drawings

universal point sets

topological drawings

representation as contact/intersection graphs
3d graph drawing

layered drawings

bus drawings

more subdivision drawings for hypergraphs

Final words

= Many important topics had to be left out ...

crossing numbers

clustered planarity

labeling

beyond planar graphs

right-angle-crossing drawings

universal point sets

topological drawings

representation as contact/intersection graphs
3d graph drawing

layered drawings

bus drawings

more subdivision drawings for hypergraphs

Thank you.

	\bf What is graph drawing?
	\bf 3D
	\bf Affine Cover Numbers
	\bf Line Cover Numbers of the Platonic Solids
	\bf Final words

